SUMMARY REPORT
207 ASPEN STREET (FORMERLY 378 ASPEN STREET)
LAUREL BAY MILITARY HOUSING AREA
MARINE CORPS AIR STATION BEAUFORT
BEAUFORT, SC

Revision: 0 Prepared for:

Department of the Navy
Naval Facilities Engineering Command, Mid-Atlantic
9324 Virginia Avenue
Norfolk, Virginia 23511-3095

and

Naval Facilities Engineering Command Atlantic 9324 Virginia Avenue Norfolk, Virginia 23511-3095 SUMMARY REPORT
207 ASPEN STREET (FORMERLY 378 ASPEN STREET)
LAUREL BAY MILITARY HOUSING AREA
MARINE CORPS AIR STATION BEAUFORT
BEAUFORT, SC

Revision: 0
Prepared for:

Department of the Navy
Naval Facilities Engineering Command, Mid- Atlantic
9324 Virginia Avenue
Norfolk, Virginia 23511-3095

and

Naval Facilities Engineering Command Atlantic

9324 Virginia Avenue Norfolk, Virginia 23511-3095

Prepared by:

CDM - AECOM Multimedia Joint Venture 10560 Arrowhead Drive, Suite 500 Fairfax, Virginia 22030

Contract Number: N62470-14-D-9016

CTO WE52

JUNE 2021

Table 1

Table 2

Table of Contents

1.0	INTRODUCTION	1
1.1 1.2	BACKGROUND INFORMATIONUST REMOVAL AND ASSESSMENT PROCESS	2
2.0	SAMPLING ACTIVITIES AND RESULTS	3
2.1 2.2 2.3	UST REMOVAL AND SOIL SAMPLING	4 5
2.4	PROPERTY STATUS	
3.0		
4.0	REFERENCES	6
	Tables	

Appendices

Appendix A	Multi-Media Selection Process for LBMH
Appendix B	UST Assessment Reports
Appendix C	Laboratory Analytical Report - Groundwater
Appendix D	Regulatory Correspondence

Laboratory Analytical Results - Soil

Laboratory Analytical Results - Groundwater

List of Acronyms

bgs below ground surface

BTEX benzene, toluene, ethylbenzene, and xylenes

CTO Contract Task Order

COPC constituents of potential concern

ft feet

IDIQ Indefinite Delivery, Indefinite Quantity

IGWA Initial Groundwater Assessment

JV Joint Venture

LBMH Laurel Bay Military Housing MCAS Marine Corps Air Station

NAVFAC Mid-Lant Naval Facilities Engineering Command Mid-Atlantic

NFA No Further Action

PAH polynuclear aromatic hydrocarbon QAPP Quality Assurance Program Plan

RBSL risk-based screening level

SCDHEC South Carolina Department of Health and Environmental Control

Site LBMH area at MCAS Beaufort, South Carolina

UST underground storage tank
VISL vapor intrusion screening level

1.0 INTRODUCTION

The CDM - AECOM Multimedia Joint Venture (JV) was contracted by the Naval Facilities Engineering Command, Mid-Atlantic (NAVFAC Mid-Lant) to provide reporting services for the heating oil underground storage tanks (USTs) located in Laurel Bay Military Housing (LBMH) area at the Marine Corps Air Station (MCAS) Beaufort, South Carolina (Site). This work has been awarded under Contract Task Order (CTO) WE52 of the Indefinite Delivery, Indefinite Quantity (IDIQ) Multimedia Environmental Compliance Contract (Contract No. N62470-14-D-9016).

As of January 2014, the LBMH addresses were re-numbered to comply with the E-911 emergency response addressing system; however, in order to remain consistent with historical sampling and reporting for LBMH area, the residences will continue to be referenced with their original address numbers in sample nomenclature and reporting documents.

This report summarizes the results the environmental investigation activities associated with the storage of home heating oil and the potential release of petroleum constituents at the referenced property. Based on the results of the investigation, a No Further Action (NFA) determination has been made by the South Carolina Department of Health and Environmental Control (SCDHEC) for 207 Aspen Street (Formerly 378 Aspen Street). This NFA determination indicates that there are no unacceptable risks to human health or the environment for the petroleum constituents associated with the home heating oil USTs. The following information is included in this report:

- Background information;
- Sampling activities and results; and
- A determination of the property status.

1.1 Background Information

The LBMH area is located approximately 3.5 miles west of MCAS Beaufort. The area is approximately 970 acres in size and serves as an enlisted and officer family housing area. The area is configured with single family and duplex residential structures, and includes recreation, open space, and community facilities. The community includes approximately 1,300 housing

units, including legacy Capehart style homes and newer duplex style homes. The housing area is bordered on the west by salt marshes and the Broad River, and to the north, east and south by uplands. Forested areas lie along the northern and northeastern borders.

Capehart style homes within the LBMH area were formerly heated using heating oil stored in USTs at each residence. There were 1,100 Capehart style housing units in the LBMH area. The newer duplex homes within the LBMH area never utilized heating oil tanks. Heating oil has not been used at Laurel Bay since the mid-1980s. As was the accepted practice at the time, USTs were drained, filled with dirt, capped, and left in place when they were removed from service. Residential USTs are not regulated in the State of South Carolina (i.e., there are no federal or state laws governing installation, management, or removal).

In 2007, MCAS Beaufort began a voluntary program to remove the unregulated, residential USTs and conduct sampling activities to determine if, and to what extent, petroleum constituents may have impacted the surrounding environment. MCAS Beaufort coordinated with SCDHEC to develop removal procedures that were consistent with procedural requirements for regulated USTs. All tank removal activities and follow-on actions are conducted in coordination with SCDHEC. To date, all known USTs have been removed from all residential properties within the LBMH area.

1.2 UST Removal and Assessment Process

During the UST removal process, a soil sample was collected from beneath the UST excavations (approximately 4 to 6 feet [ft] below ground surface [bgs]) and analyzed for a predetermined list of constituents of potential concern (COPCs) associated with the petroleum compounds found in home heating oil. These COPCs, derived from the *Quality Assurance Program Plan* (QAPP) for the Underground Storage Tank Management Division, Revision 3.1 (SCDHEC, 2016) and the Underground Storage Tank Assessment Instructions for Permanent Closure and Change-In-Service, (SCDHEC, 2018), are as follows:

- benzene, toluene, ethylbenzene, and xylenes (BTEX),
- naphthalene, and
- five select polynuclear aromatic hydrocarbon (PAHs): benzo(a)anthracene, benzo(b)fluoranthene, benzo(k)fluoranthene, chrysene and dibenz(a,h)anthracene.

Soil sample results were submitted by MCAS Beaufort to SCDHEC utilizing SCDHEC's UST Assessment Report form. In accordance with SCDHEC's *QAPP for the UST Management Division* (SCDHEC, 2016), the soil screening levels consists of SCDHEC risk-based screening levels (RBSLs). It should be noted that the RBSLs for select PAHs were revised in Revision 2.0 of the QAPP (SCDHEC, 2013) and were revised again in Revision 3.0 (SCDHEC, 2015). The screening levels used for evaluation at each site were those levels that were in effect at the time of reporting and review by SCDHEC.

The results of the soil sampling at each former UST location were used to determine if a potential for groundwater contamination exists (i.e., soil results greater than RBSLs) and subsequently to select properties for follow-up initial groundwater assessment (IGWA) sampling. The results of the IGWA sampling (if necessary) are used to determine the presence or absence of the aforementioned COPCs in groundwater and identify whether former UST locations will require additional delineation of COPCs in groundwater. In order to delineate the extent of impact to groundwater, permanent wells are installed and a sampling program is established for those former UST locations where IGWA sampling has indicated the presence of COPCs in excess of the SCDHEC RBSLs for groundwater. Groundwater analytical results are also compared to the site specific groundwater vapor intrusion screening levels (VISLs) to evaluate the potential for vapor intrusion and the necessity for an investigation associated with this media. A multi-media investigation selection process tree, applicable to the LBMH UST investigations, is presented as Appendix A.

2.0 SAMPLING ACTIVITIES AND RESULTS

The following section presents the sampling activities and associated results for 207 Aspen Street (Formerly 378 Aspen Street). Details regarding the soil investigation at this site are provided in the *SCDHEC UST Assessment Report – 378 Aspen Street* (MCAS Beaufort, 2009) and *SCDHEC UST Assessment Report – 378 Aspen Street* (MCAS Beaufort, 2011). The UST Assessment Reports are provided in Appendix B. Details regarding the IGWA sampling activities at this site are provided in the *Initial Groundwater Investigation Report – November and December 2015* (Resolution Consultants, 2016). The laboratory report that includes the pertinent IGWA analytical results for this site is presented in Appendix C.

2.1 UST Removal and Soil Sampling

In September 1999 and June 2011, two 280 gallon heating oil USTs were removed at 207 Aspen Street (Formerly 378 Aspen Street). Tank 1 was removed on September 9, 1999 from the front yard area. Tank 2 was removed on June 23, 2011 from the front landscaped bed area, adjacent to the driveway. The former UST locations are indicated in the figures of the UST Assessment Reports (Appendix B). The USTs were removed, cleaned, and shipped offsite for recycling. There was no visual evidence (i.e., staining or sheen) of petroleum impact at the time of the UST removal. According to the UST Assessment Reports (Appendix B), the depths to the bases of the USTs were not specified (Tank 1) and 5'8" (Tank 2) bgs and a single soil sample was collected for each at that depth. The samples were collected from the fill port side of the former USTs to represent a worst case scenario.

Following UST removal, a soil sample was collected from the base of each excavation and shipped to an offsite laboratory for analysis of the petroleum COPCs. Sampling was performed in accordance with applicable South Carolina regulation R.61-92, Part 280 (SCDHEC, 2017) and assessment guidelines.

2.2 Soil Analytical Results

A summary of the laboratory analytical results and SCDHEC RBSLs is presented in Table 1. A copy of the laboratory analytical data reports are included in the UST Assessment Reports presented in Appendix B. The laboratory analytical data reports include the soil results for the additional PAHs that were analyzed, but do not have associated RBSLs.

The soil sample results were submitted by MCAS Beaufort to SCDHEC utilizing SCDHEC's UST Assessment Report form (Appendix B). The results of the soil sampling at the former UST locations (Tanks 1 and 2) were used by MCAS Beaufort, in consultation with SCDHEC, to determine a path forward (i.e., additional sampling or NFA) for the property. The soil results collected from 207 Aspen Street (Formerly 378 Aspen Street) during the removal of Tank 1 were less than the SCDHEC RBSLs, which indicated the subsurface was not impacted by COPCs associated with the former UST at concentrations that presented a potential risk to human health and the environment. The soil results collected from 207 Aspen Street (Formerly 378 Aspen Street) during the removal of Tank 2 were greater than the SCDHEC RBSLs, which indicated further investigation was required. In a letter dated July 1, 2015, SCDHEC requested an IGWA be conducted at the former UST location (Tank 2) at 207 Aspen Street (Formerly 378

Aspen Street) to determine if the groundwater was impacted by petroleum COPCs. SCDHEC's request letter is provided in Appendix D.

2.3 Groundwater Sampling

On November 11, 2015, a temporary monitoring well was installed at 207 Aspen Street (Formerly 378 Aspen Street), in accordance with the South Carolina Well Standards and Regulations (R.61-71.H-I, updated June 24, 2016). In order to provide data that can be used to determine whether COPCs are migrating to underlying groundwater, the monitoring well was placed in the same general location as the former heating oil UST (Tank 2). The former UST location is indicated on Figures 2 and 3 of the 2011 UST Assessment Report (Appendix B). Further details are provided in the *Initial Groundwater Investigation Report – November and December 2015* (Resolution Consultants, 2016).

The sampling strategy for this phase of the investigation required a one-time sampling event of the temporarily installed monitoring well. Following well installation and development, groundwater samples were collected using low-flow methods and shipped to an offsite laboratory for analysis of the petroleum COPCs. Upon completion of groundwater sampling, the temporary well was abandoned in accordance with the South Carolina Well Standards and Regulations R.61-71 (SCDHEC, 2016). Field forms are provided in the *Initial Groundwater Investigation Report – November and December 2015* (Resolution Consultants, 2016).

2.4 Groundwater Analytical Results

A summary of the laboratory analytical results and SCDHEC RBSLs is presented in Table 2. A copy of the laboratory analytical data report is included in Appendix C.

The groundwater results collected from 207 Aspen Street (Formerly 378 Aspen Street) were less than the SCDHEC RBSLs and the site specific groundwater VISLs (Table 2), which indicated that the groundwater was not impacted by COPCs associated with the former UST at concentrations that present a potential risk to human health and the environment.

3.0 PROPERTY STATUS

Based on the analytical results for soil (Tank 1) and groundwater (Tank 2), SCDHEC made the determination that NFA was required for 207 Aspen Street (Formerly 378 Aspen Street). This

NFA determination was obtained in a letter dated June 8, 2016 . SCDHEC's NFA letter is provided in Appendix D.

4.0 REFERENCES

- Marine Corps Air Station Beaufort, 2009. South Carolina Department of Health and Environmental Control (SCDHEC) Underground Storage Tank Assessment Report 378

 Aspen Street, Laurel Bay Military Housing Area, April 2009.
- Marine Corps Air Station Beaufort, 2011. South Carolina Department of Health and Environmental Control (SCDHEC) Underground Storage Tank Assessment Report 378

 Aspen Street, Laurel Bay Military Housing Area, June 2011.
- Resolution Consultants, 2016. *Initial Groundwater Investigation Report November and December 2015 for Laurel Bay Military Housing Area, Multiple Properties, Laurel Bay Military Housing Area, Marine Corps Air Station Beaufort, Beaufort, South Carolina*, April 2016.
- South Carolina Department of Health and Environmental Control Bureau of Land and Waste Management, 2013. *Quality Assurance Program Plan for the Underground Storage Tank Management* Division, *Revision 2.0*, April 2013.
- South Carolina Department of Health and Environmental Control Bureau of Land and Waste Management, 2015. *Quality Assurance Program Plan for the Underground Storage Tank Management* Division, *Revision 3.0*, May 2015.
- South Carolina Department of Health and Environmental Control Bureau of Land and Waste Management, 2016. *Quality Assurance Program Plan for the Underground Storage Tank Management* Division, *Revision 3.1*, February 2016.
- South Carolina Department of Health and Environmental Control Bureau of Land and Waste Management, 2017. *R.61-92, Part 280, Underground Storage Tank Control Regulations*, March 2017.
- South Carolina Department of Health and Environmental Control Bureau of Land and Waste Management, 2018. *Underground Storage Tank Assessment Instructions for Permanent Closure and Change-In-Service*, March 2018.

Summary Report 207 Aspen Street (Formerly 378 Aspen Street) Laurel Bay Military Housing Area, Marine Corps Air Station Beaufort June 2021

South Carolina Department of Health and Environmental Control Bureau of Water, 2016. *R.61-71, Well Standards*, June 2016.

Tables

Table 1 Laboratory Analytical Results - Soil 207 Aspen Street (Formerly 378 Aspen Street) Laurel Bay Military Housing Area Marine Corps Air Station Beaufort Beaufort, South Carolina

Constituent	SCDHEC RBSLs (1)	Results Samples Collected 09/09/99 and 06/23/11		
		378 UST 09/09/99	378 Aspen 06/23/11	
Volatile Organic Compounds Analyzed by EPA Method 8260B (mg/kg)				
Benzene	0.003	ND	0.0213	
Ethylbenzene	1.15	ND	2.46	
Naphthalene	0.036	ND	12.1	
Toluene	0.627	ND	ND	
Xylenes, Total	13.01	ND	0.598	
Semivolatile Organic Compounds Analyzed by EPA Method 8270D (mg/kg)				
Benzo(a)anthracene	0.66	ND	0.947	
Benzo(b)fluoranthene	0.66	ND	ND	
Benzo(k)fluoranthene	0.66	ND	ND	
Chrysene	0.66	ND	1.53	
Dibenz(a,h)anthracene	0.66	ND	ND	

Notes:

⁽¹⁾ South Carolina Risk-Based Screening Levels from the Quality Assurance Program Plan for the Underground Storage Tank Management Division, Revision 3.0 and 3.1 (SCDHEC, May 2015 and SCDHEC, February 2016) and the Underground Storage Tank Assessment Guidelines (SCDHEC, February 2006).

Bold font indicates the analyte was detected.

Bold font and shading indicates the concentration exceeds the SCDHEC RBSL.

EPA - United States Environmental Protection Agency

mg/kg - milligrams per kilogram

ND - not detected at the reporting limit (or method detection limit if shown on the laboratory report). The soil laboratory report is provided in Appendix B.

RBSL - Risk-Based Screening Level

SCDHEC - South Carolina Department Of Health and Environmental Control

Table 2 Laboratory Analytical Results - Groundwater 207 Aspen Street (Formerly 378 Aspen Street) Laurel Bay Military Housing Area Marine Corps Air Station Beaufort

Beaufort, South Carolina

Constituent	SCDHEC RBSLs (1)	Site-Specific Groundwater VISLs (µg/L) ⁽²⁾	Results Sample Collected 11/12/15	
Volatile Organic Compounds Analyzed by EPA Method 8260B (μg/L)				
Benzene	5	16.24	ND	
Ethylbenzene	700	45.95	0.95	
Naphthalene	25	29.33	4.3	
Toluene	1000	105,445	ND	
Xylenes, Total	10,000	2,133	ND	
Semivolatile Organic Compounds Analyzed by EPA Method 8270D (μg/L)				
Benzo(a)anthracene	10	NA	ND	
Benzo(b)fluoranthene	10	NA	ND	
Benzo(k)fluoranthene	10	NA	ND	
Chrysene	10	NA	ND	
Dibenz(a,h)anthracene	10	NA	ND	

Notes:

⁽²⁾ Site-specific groundwater VISLs were calculated using the EPA JE Model Spreadsheets (Version 3.1, February 2004) and conservative modeling inputs representative of a small single-story house with an 8 foot ceiling. Site-specific groundwater VISLs were developed based on a target risk level of 1x10⁻⁶, a target hazard quotient of 1 (per target organ), and a default residential exposure scenario, assuming exposure for 24 hours/day, 350 days/year, for 26 years. Modeling was performed for a range of depths to groundwater for application as appropriate in different areas of the Laurel Bay Military Housing Area. The most conservative levels are presented for comparison. Refer to Appendix H of the Uniform Federal Policy Sampling Analysis and Sampling Plan for Vapor Media, Revision 4 (Resolution Consultants, April 2017) for additional information.

Bold font indicates the analyte was detected.

Bold font and shading indicates the concentration exceeds the SCDHEC RBSL and/or the Site-Specific Groundwater VISL.

EPA - United States Environmental Protection Agency

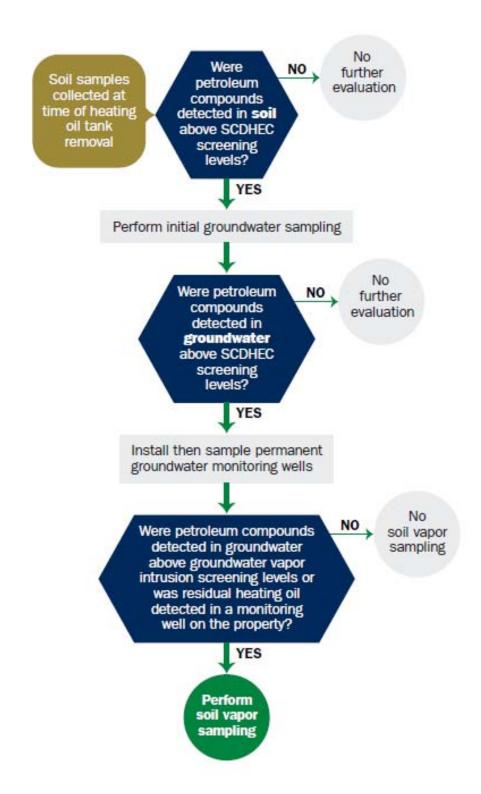
JE - Johnson & Ettinger

NA - Not Applicable

ND - not detected at the reporting limit (or method detection limit if shown on the laboratory report). The groundwater laboratory report is provided in Appendix C.

RBSL - Risk-Based Screening Level

SCDHEC - South Carolina Department Of Health and Environmental Control


μg/L - micrograms per liter

VISL - Vapor Intrusion Screening Level

⁽¹⁾ South Carolina Risk-Based Screening Levels from the Quality Assurance Program Plan for the Underground Storage Tank Management Division, Revision 3.1 (SCDHEC, February 2016).

Appendix A Multi-Media Selection Process for LBMH

Appendix A - Multi-Media Selection Process for LBMH

Appendix B UST Assessment Reports

Attachment 1

South Carolina Department of Health and Environmental Control (SCDHEC) Underground Storage Tank (UST) Assessment Report

Submit Completed Form To: UST Program SCDHEC 2600 Bull Street Columbia, South Carolina 29201 Telephone (803) 896-7957

I. OWNERSHIP OF UST (S)

Owner Name (Corporation, Individual, Public P.O. Box 55001	Agency, Other)	
P.O. Box 55001		
Mailing Address		
Beaufort, South	Carolina	29904-5001
City	ate	Zip Code
	228-7317	Craig Ehde
Area Code Telepho	ne Number	Contact Person

II. SITE IDENTIFICATION AND LOCATION

Permit I.D. #						
<u>Laurel Bay Militar</u>	y Housing Area,	Marine (Corps Air	Station,	Beaufort,	SC
Facility Name or Company	Site Identifier					
378 Aspen Street, Street Address or State Road		itary Hou	using Area	 .	<u> </u>	
Beaufort,	Beaufort	_				
City	County					

Attachment 2

III. INSURANCE INFORMATION

Insurance Statement
The petroleum release reported to DHEC on at Permit ID Number may qualify to receive state monies to pay for appropriate site rehabilitation activities. Before participation is allowed in the State Clean-up fund, written confirmation of the existence or non-existence of an environmental insurance policy is required. This section must be completed.
Is there now, or has there ever been an insurance policy or other financial mechanism that covers this UST release? YES NO (check one)
If you answered YES to the above question, please complete the following information:
My policy provider is: The policy deductible is: The policy limit is:
If you have this type of insurance, please include a copy of the policy with this report.
IV. REQUEST FOR SUPERB FUNDING
I DO / DO NOT wish to participate in the SUPERB Program. (Circle one.)
I DO / DO NOT wish to participate in the SUPERB Program. (Circle one.) V. CERTIFICATION (To be signed by the UST owner)
V. CERTIFICATION (To be signed by the UST owner) Legrify that I have personally examined and am familiar with the information submitted in this and all
V. CERTIFICATION (To be signed by the UST owner) I certify that I have personally examined and am familiar with the information submitted in this and all attached documents; and that based on my inquiry of those individuals responsible for obtaining this information, I believe that the submitted information is true, accurate, and complete.
V. CERTIFICATION (To be signed by the UST owner) I certify that I have personally examined and am familiar with the information submitted in this and all attached documents; and that based on my inquiry of those individuals responsible for obtaining this information, I believe that the submitted information is true, accurate, and complete. Name (Type or print.)
V. CERTIFICATION (To be signed by the UST owner) I certify that I have personally examined and am familiar with the information submitted in this and all attached documents; and that based on my inquiry of those individuals responsible for obtaining this information, I believe that the submitted information is true, accurate, and complete. Name (Type or print.) Signature
V. CERTIFICATION (To be signed by the UST owner) I certify that I have personally examined and am familiar with the information submitted in this and all attached documents; and that based on my inquiry of those individuals responsible for obtaining this information, I believe that the submitted information is true, accurate, and complete. Name (Type or print.) Signature To be completed by Notary Public:

Gas, Kerosene)1k, 2k)	378Aspen Heating oil 280 gal			
·				
1k, 2k)	280 gal			
	l			
	Late 1950s			
Material(ex. Steel, FRP)	Steel			
`Last Use	Unknown			
Base of Tank	5'8"			
n Equipment Y/N	No			
ntion Equipment Y/N	No			
sure Removed/Filled	Removed			
moved/Filled	6/23/11			
ion or Pitting Y/N	Yes			
Y/N	Yes			
•		,		S
	Material(ex. Steel, FRP) Last Use Base of Tank n Equipment Y/N ntion Equipment Y/N sure Removed/Filled moved/Filled y/N y/N sosal for any USTs removed from spen was removed from that "A".	Atterial(ex. Steel, FRP) Last Use	Steel Unknown Stast Use Base of Tank In Equipment Y/N Sure Removed/Filled In on or Pitting Y/N Y/N Steel Unknown S' 18" No Removed 6/23/11 Yes Yes Sosal for any USTs removed from the ground (attach disposal manifests) appen was removed from the ground, cleaned and recent "A".	Material(ex. Steel, FRP) Steel Unknown 5'8" No No No Removed Filled moved/Filled fon or Pitting Y/N Y/N Steel Unknown 5'8" No No Removed 6/23/11 Yes Y/N Yes Sosal for any USTs removed from the ground (attach disposal manifests) ground, cleaned and recycled.

VII. PIPING INFORMATION

	378Aspen		
	Steel		
Construction Material(ex. Steel, FRP)	& Copper		
Distance from UST to Dispenser	N/A		
Number of Dispensers	N/A		
Type of System Pressure or Suction	Suction		
Was Piping Removed from the Ground? Y/N	No		
Visible Corrosion or Pitting Y/N	Yes		
Visible Holes Y/N	No		
Age	Late 1950s		
If any corrosion, pitting, or holes were observed, or Corrosion and pitting were found			_
pipe. Copper supply and return 1	ines were sound.		
VIII. BRIEF SITE DESCR			:1
The USTs at the residences are contained fuel oil	onstructed of sing	le wall stee	:1
The USTs at the residences are co	onstructed of sing for heating. These	le wall stee USTs were	:1
The USTs at the residences are contained fuel oil	onstructed of sing for heating. These	le wall stee USTs were	:1
The USTs at the residences are contained fuel oil	onstructed of sing for heating. These	le wall stee USTs were	:1
The USTs at the residences are contained fuel oil	onstructed of sing for heating. These	le wall stee USTs were	:1
The USTs at the residences are contained fuel oil	onstructed of sing for heating. These	le wall stee USTs were	-1

IX. SITE CONDITIONS

	Yes	No	Unk
A. Were any petroleum-stained or contaminated soils found in the UST excavation, soil borings, trenches, or monitoring wells? If yes, indicate depth and location on the site map.		Х	
B. Were any petroleum odors detected in the excavation, soil borings, trenches, or monitoring wells? If yes, indicate location on site map and describe the odor (strong, mild, etc.)		Х	
C. Was water present in the UST excavation, soil borings, or trenches? If yes, how far below land surface (indicate location and depth)?		Х	
D. Did contaminated soils remain stockpiled on site after closure? If yes, indicate the stockpile location on the site map. Name of DHEC representative authorizing soil removal:		X	
E. Was a petroleum sheen or free product detected on any excavation or boring waters? If yes, indicate location and thickness.		Х	

X. SAMPLE INFORMATION

A. SCDHEC Lab Certification Number 84009

B.

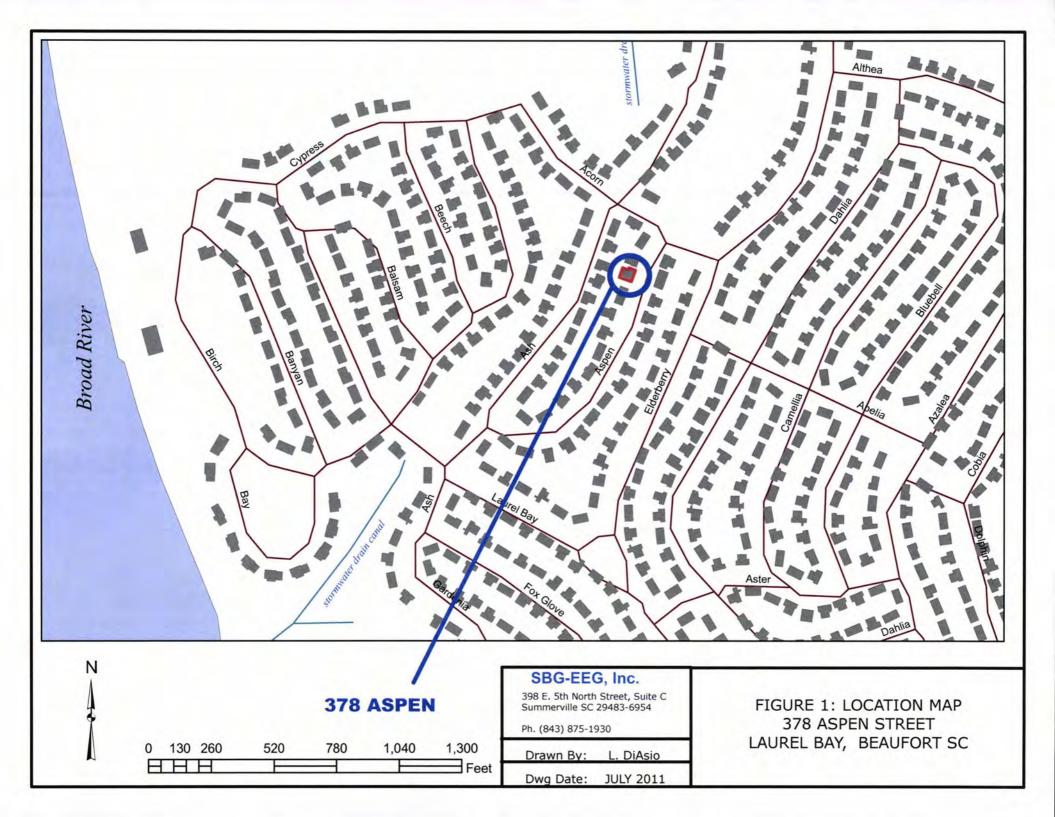
Sample #	Location	Sample Type (Soil/Water)	Soil Type (Sand/Clay)	Depth*	Date/Time of Collection	Collected by	OVA#
378 Aspen	Excav at fill end	Soil	Sandy	5'8"	6/23/11 1215 hrs	P. Shaw	
Tibpeii			1				
						-	
8							
9							
10							
11							
12							
13							
14							
15							
16							
17							
18							
19							
20							

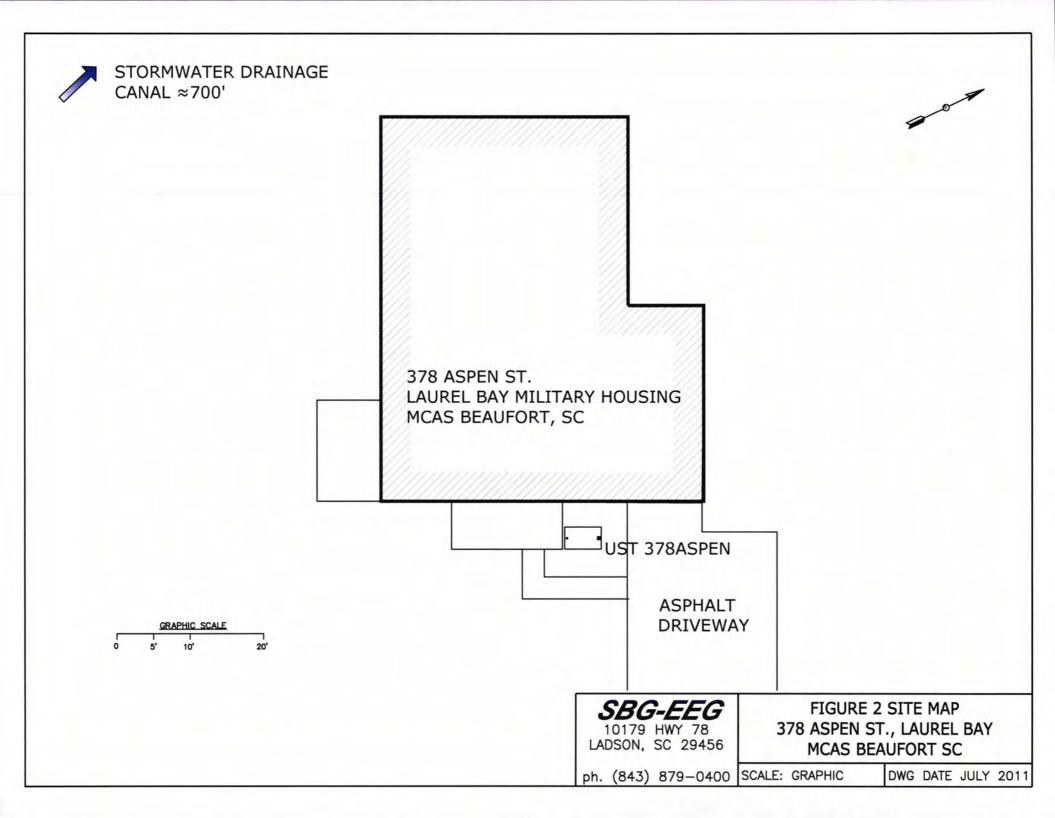
^{* =} Depth Below the Surrounding Land Surface

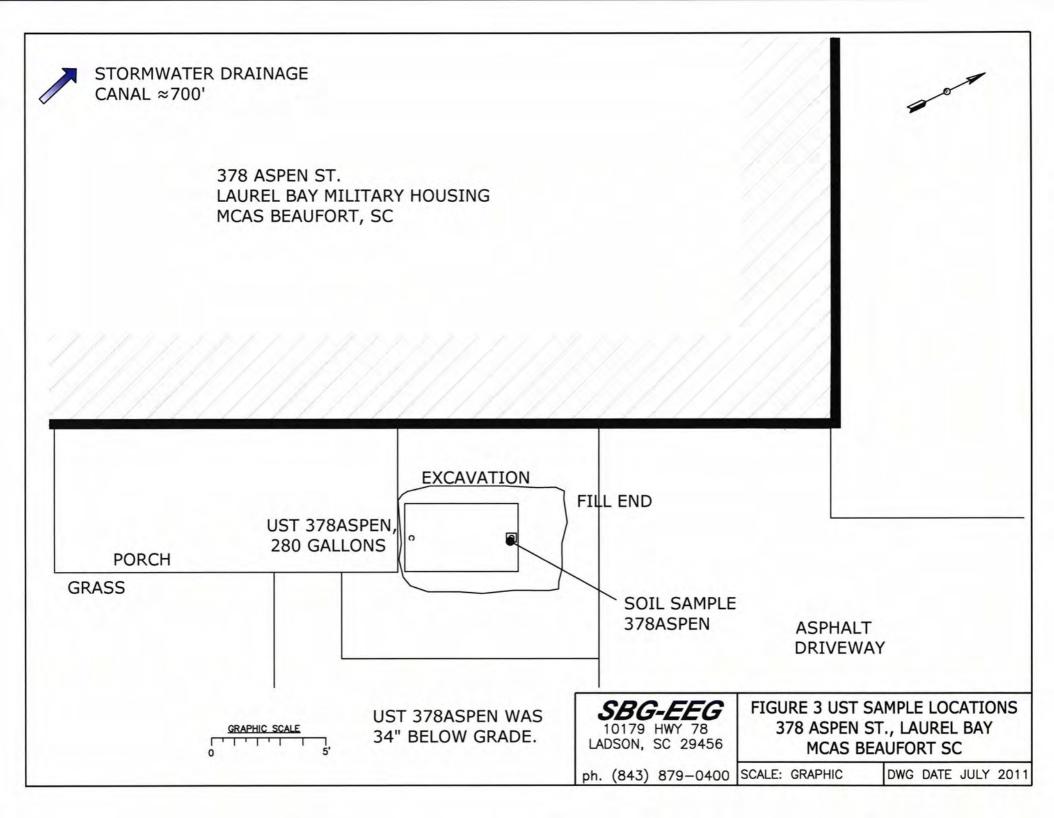
XI. SAMPLING METHODOLOGY

Provide a detailed description of the methods used to collect <u>and</u> store the samples. Also include the preservative used for each sample. Please use the space provided below.

Sampling was performed in accordance with SC DHEC R.61-92 Part 280
and SC DHEC Assessment Guidelines. Sample containers were prepared by the
testing laboratory. The grab method was utilized to fill the sample
containers leaving as little head space as possible and immediately
capped. Soil samples were extracted from area below tank. The
samples were marked, logged, and immediately placed in a sample cooler
packed with ice to maintain an approximate temperature of 4 degrees
Centigrade. Tools were thoroughly cleaned and decontaminated with
the seven step decon process after each use. The samples remained in
custody of SBG-EEG, Inc. until they were transferred to Test America
Incorporated for analysis as documented in the Chain of Custody Record.


XII. RECEPTORS


		Yes	No
A.	Are there any lakes, ponds, streams, or wetlands located within 1000 feet of the UST system?	*X	
	*~ 700' to drainage canal If yes, indicate type of receptor, distance, and direction on site map.		
B.	Are there any public, private, or irrigation water supply wells within 1000 feet of the UST system?		Х
	If yes, indicate type of well, distance, and direction on site map.		
C.	Are there any underground structures (e.g., basements) Located within 100 feet of the UST system?	·	Х
	If yes, indicate type of structure, distance, and direction on site map.		
D.	Are there any underground utilities (e.g., telephone, electricity, gas, water, sewer, storm drain) located within 100 feet of the UST system that could potentially come in contact with the contamination? *Sewer, water, el	*X ectri	city,
	cable, & fiber op If yes, indicate the type of utility, distance, and direction on the site map.	tic	
E.	Has contaminated soil been identified at a depth less than 3 feet below land surface in an area that is not capped by asphalt or concrete?		X
	If yes, indicate the area of contaminated soil on the site map.		


XIII. SITE MAP

You must supply a <u>scaled</u> site map. It should include all buildings, road names, utilities, tank and dispenser island locations, labeled sample locations, extent of excavation, and any other pertinent information.

(Attach Site Map Here)

Picture 1: Location of UST 378Aspen.

Picture 2: UST 378Aspen excavation in progress.

XIV. SUMMARY OF ANALYSIS RESULTS

Enter the soil analytical data for each soil boring for all COC in the table below and on the following page.

			,	T
CoC UST	378Aspen			
Benzene	0.0213 mg/k	g		
Toluene	ND			
Ethylbenzene	2.46 mg/kg			
Xylenes	0.598 mg/kg			
Naphthalene	12.1 mg/kg			
Benzo (a) anthracene	0.947 mg/kg			
Benzo (b) fluoranthene	ND			
Benzo (k) fluoranthene	ND			
Chrysene	1.53 mg/kg			
Dibenz (a, h) anthracene	ND			
TPH (EPA 3550)				
СоС				
Benzene				
Toluene				
Ethylbenzene				
Xylenes				
Naphthalene				
Benzo (a) anthracene				
Benzo (b) fluoranthene				
Benzo (k) fluoranthene				
Chrysene				
Dibenz (a, h) anthracene				
TPH (EPA 3550)				

SUMMARY OF ANALYSIS RESULTS (cont'd)
Enter the ground water analytical data for each sample for all CoC in the table below. If free product is present, indicate the measured thickness to the nearest 0.01 feet.

is present, indicate the measured			1		
CoC	RBSL	W-1	W-2	W -3	W -4
	(µg/l)				
Free Product					
Thickness	None				
THICKHESS					
Benzene	5				
Toluene	1,000				
Ethylbenzene	700				
Xylenes	10,000				
Total BTEX	N/A				
MTBE	40				
Naphthalene	25				
Benzo (a) anthracene	10				
Benzo (b) flouranthene	10				
Benzo (k) flouranthene	10				
Chrysene	10				
Dibenz (a, h) anthracene	10				
EDB	.05				
1,2-DCA	5				
Lead	Site specific				

XV. ANALYTICAL RESULTS

You must submit the laboratory report and chain-of-custody form for the samples. These samples must be analyzed by a South Carolina certified laboratory.

(Attach Certified Analytical Results and Chain-of-Custody Here) (Please see Form #4)

TestAmerica

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Nashville 2960 Foster Creighton Road Nashville, TN 37204 Tel: 800-765-0980

TestAmerica Job ID: NUF4130

Client Project/Site: [none]

Client Project Description: Laurel Bay Housing Project

For:

EEG - Small Business Group, Inc. (2449) 10179 Highway 78 Ladson, SC 29456

Attn: Tom McElwee

Authorized for release by: 07/10/2011 04:44:37 PM

Ken A. Hayes Senior Project Manager

ken.hayes@testamericainc.com

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Table of Contents

	_	_	 	 		_			_	_	_	_	_	_	_	_	_								
Cover Page								 													. ,				1
Table of Contents																									2
Sample Summary																									3
Definitions			 															 		 					4
Client Sample Results									 																5
QC Sample Results				 																					9
QC Association																									
Chronicle							. ,															. ,			20
Method Summary																									2
Certification Summary									 																22
Chain of Custody																									

Sample Summary

Client: EEG - Small Business Group, Inc. (2449)

Project/Site: [none]

TestAmerica Job ID: NUF4130

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
NUF4130-01	373 Aspen	Soil	06/21/11 12:00	06/25/11 08:50
NUF4130-02	337 Ash	Soil	06/22/11 14:45	06/25/11 08:50
NUF4130-03	378 Aspen	Soil	06/23/11 12:15	06/25/11 08:50

Definitions/Glossary

Client: EEG - Small Business Group, Inc. (2449)

Project/Site: [none]

TestAmerica Job ID: NUF4130

Qualifiers

GCMS Volatiles

Qualifier	Qualifier Description
RL1	Reporting limit raised due to sample matrix effects.
ZX	Due to sample matrix effects, the surrogate recovery was outside the acceptance limits.

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.
₩	Listed under the "D" column to designate that the result is reported on a dry weight basis.
EPA	United States Environmental Protection Agency
ND	Not Detected above the reporting level.
MDL	Method Detection Limit
RL	Reporting Limit
RE, RE1 (etc.)	Indicates a Re-extraction or Reanalysis of the sample.
%R	Percent Recovery
RPD	Relative Percent Difference, a measure of the relative difference between two points.

Client: EEG - Small Business Group, Inc. (2449)

Project/Site: [none]

% Dry Solids

TestAmerica Job ID: NUF4130

Client Sample ID: 373 Aspen

Date Collected: 06/21/11 12:00 Date Received: 06/25/11 08:50 Lab Sample ID: NUF4130-01

Matrix: Soil

Percent Solids: 96.3

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		0.00245	0.00135	mg/kg dry	\$	06/21/11 12:00	06/30/11 15:07	1.00
Ethylbenzene	ND		0.00245	0.00120	mg/kg dry	\$	06/21/11 12:00	06/30/11 15:07	1.00
Naphthalene	ND		0.00614	0.00209	mg/kg dry	\$	06/21/11 12:00	06/30/11 15:07	1.00
Toluene	ND		0.00245	0.00109	mg/kg dry	\$	06/21/11 12:00	06/30/11 15:07	1.00
Xylenes, total	ND		0.00614	0.00233	mg/kg dry	¢	06/21/11 12:00	06/30/11 15:07	1.00
Surrogate	% Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4	105		67 - 138				06/21/11 12:00	06/30/11 15:07	1.00
Dibromofluoromethane	100		75 - 125				06/21/11 12:00	06/30/11 15:07	1.00
Toluene-d8	104		76 - 129				06/21/11 12:00	06/30/11 15:07	1.00
4-Bromofluorobenzene	101		67 - 147				06/21/11 12:00	06/30/11 15:07	1.00
Method: SW846 8270D - Pol	varomatic Hydroca	rbons by E	PA 8270D						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	ND		0.0694	0.0145	mg/kg dry	Ö	06/29/11 10:40	06/30/11 15:55	1.00
Acenaphthylene	ND		0.0694	0.0207	mg/kg dry	Q.	06/29/11 10:40	06/30/11 15:55	1.00
Anthracene	ND		0.0694	0.00932	mg/kg dry	ø	06/29/11 10:40	06/30/11 15:55	1.00
Benzo (a) anthracene	ND		0.0694	0.0114	mg/kg dry	\$	06/29/11 10:40	06/30/11 15:55	1.00
Benzo (a) pyrene	ND		0.0694	0.00829	mg/kg dry	÷.	06/29/11 10:40	06/30/11 15:55	1.00
Benzo (b) fluoranthene	ND		0.0694	0.0394	mg/kg dry	O	06/29/11 10:40	06/30/11 15:55	1.00
Benzo (g,h,i) perylene	ND		0.0694	0.00932	mg/kg dry	O	06/29/11 10:40	06/30/11 15:55	1.00
Benzo (k) fluoranthene	ND		0.0694	0.0383	mg/kg dry	₹.	06/29/11 10:40	06/30/11 15:55	1.00
Chrysene	ND		0.0694	0.0321	mg/kg dry	*	06/29/11 10:40	06/30/11 15:55	1.00
Dibenz (a,h) anthracene	ND		0.0694	0.0155	mg/kg dry	305	06/29/11 10:40	06/30/11 15:55	1.00
Fluoranthene	ND		0.0694	0.0114	mg/kg dry	225	06/29/11 10:40	06/30/11 15:55	1.00
Fluorene	ND		0.0694	0.0207	mg/kg dry	Ø.	06/29/11 10:40	06/30/11 15:55	1.00
Indeno (1,2,3-cd) pyrene	ND		0.0694	0.0321	mg/kg dry	0	06/29/11 10:40	06/30/11 15:55	1.00
Naphthalene	ND		0.0694	0.0145	mg/kg dry	O	06/29/11 10:40	06/30/11 15:55	1.00
Phenanthrene	ND		0.0694	0.0104	mg/kg dry	尊	06/29/11 10:40	06/30/11 15:55	1.00
Pyrene	ND		0.0694	0.0238	mg/kg dry	0	06/29/11 10:40	06/30/11 15:55	1.00
1-Methylnaphthalene	ND		0.0694	0.0124	mg/kg dry	100	06/29/11 10:40	06/30/11 15:55	1.00
2-Methylnaphthalene	ND		0.0694	0.0218	mg/kg dry	*	06/29/11 10:40	06/30/11 15:55	1.00
Surrogate	% Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Terphenyl-d14	78		18 - 120				06/29/11 10:40	06/30/11 15:55	1.00
2-Fluorobiphenyl	63		14 - 120				06/29/11 10:40	06/30/11 15:55	1.00
Nitrobenzene-d5	64		17 - 120				06/29/11 10:40	06/30/11 15:55	1.00
Method: SW-846 - General C	Chemistry Paramete	ers							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac

07/06/11 09:24

1.00

0.500

96.3

0.500 %

07/05/11 13:20

Client: EEG - Small Business Group, Inc. (2449)

Project/Site: [none]

% Dry Solids

TestAmerica Job ID: NUF4130

Client Sample ID: 337 Ash

Date Collected: 06/22/11 14:45 Date Received: 06/25/11 08:50 Lab Sample ID: NUF4130-02

Matrix: Soil

Percent Solids: 83.1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		0.00228	0.00125	mg/kg dry	70	06/22/11 14:45	06/30/11 15:34	1.00
Ethylbenzene	ND		0.00228	0.00112	mg/kg dry	305	06/22/11 14:45	06/30/11 15:34	1.00
Naphthalene	ND		0.00570	0.00194	mg/kg dry	-05	06/22/11 14:45	06/30/11 15:34	1.00
Toluene	ND		0.00228	0.00101	mg/kg dry	-01	06/22/11 14:45	06/30/11 15:34	1.00
Xylenes, total	ND		0.00570	0.00216	mg/kg dry	₩.	06/22/11 14:45	06/30/11 15:34	1.00
Surrogate	% Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4	101		67 - 138				06/22/11 14:45	06/30/11 15:34	1.00
Dibromofluoromethane	96		75 - 125				06/22/11 14:45	06/30/11 15:34	1.00
Toluene-d8	111		76 - 129				06/22/11 14:45	06/30/11 15:34	1.00
4-Bromofluorobenzene	105		67 - 147				06/22/11 14:45	06/30/11 15:34	1.00
Method: SW846 8270D - Polya	romatic Hydroca	rbons by El	PA 8270D						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	ND		0.0806	0.0168	mg/kg dry	Ö	06/29/11 10:40	06/30/11 16:20	1.00
Acenaphthylene	ND		0.0806	0.0240	mg/kg dry	0	06/29/11 10:40	06/30/11 16:20	1.00
Anthracene	ND		0.0806	0.0108	mg/kg dry	0	06/29/11 10:40	06/30/11 16:20	1.00
Benzo (a) anthracene	ND		0.0806	0.0132	mg/kg dry	ø	06/29/11 10:40	06/30/11 16:20	1.00
Benzo (a) pyrene	ND		0.0806	0.00962	mg/kg dry	-	06/29/11 10:40	06/30/11 16:20	1.00
Benzo (b) fluoranthene	ND		0.0806	0.0457	mg/kg dry	-02	06/29/11 10:40	06/30/11 16:20	1.00
Benzo (g,h,i) perylene	ND		0.0806	0.0108	mg/kg dry	-03	06/29/11 10:40	06/30/11 16:20	1.00
Benzo (k) fluoranthene	ND		0.0806	0.0445	mg/kg dry	10	06/29/11 10:40	06/30/11 16:20	1.00
Chrysene	ND		0.0806	0.0373	mg/kg dry	0	06/29/11 10:40	06/30/11 16:20	1.00
Dibenz (a,h) anthracene	ND		0.0806	0.0180	mg/kg dry	0	06/29/11 10:40	06/30/11 16:20	1.00
Fluoranthene	ND		0.0806	0.0132	mg/kg dry	0	06/29/11 10:40	06/30/11 16:20	1.00
Fluorene	ND		0.0806	0.0240	mg/kg dry	0	06/29/11 10:40	06/30/11 16:20	1.00
Indeno (1,2,3-cd) pyrene	ND		0.0806	0.0373	mg/kg dry	O	06/29/11 10:40	06/30/11 16:20	1.00
Naphthalene	ND		0.0806	0.0168	mg/kg dry	12	06/29/11 10:40	06/30/11 16:20	1.00
Phenanthrene	ND		0.0806	0.0120	mg/kg dry	Ø	06/29/11 10:40	06/30/11 16:20	1.00
Pyrene	ND		0.0806	0.0277	mg/kg dry	0	06/29/11 10:40	06/30/11 16:20	1.00
1-Methylnaphthalene	ND		0.0806	0.0144	mg/kg dry	0	06/29/11 10:40	06/30/11 16:20	1.00
2-Methylnaphthalene	ND		0.0806	0.0253	mg/kg dry	0	06/29/11 10:40	06/30/11 16:20	1.00
Surrogate	% Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Terphenyl-d14	78		18 - 120				06/29/11 10:40	06/30/11 16:20	1.00
	66		14 - 120				06/29/11 10:40	06/30/11 16:20	1.00
2-Fluorobiphenyl							and the second second second second		10120
2-Fluorobiphenyl Nitrobenzene-d5	64		17 - 120				06/29/11 10:40	06/30/11 16:20	1.00
		ers	17 - 120				06/29/11 10:40	06/30/11 16:20	1.00

07/06/11 09:24

0.500

0.500 %

07/05/11 13:20

83.1

Client: EEG - Small Business Group, Inc. (2449)

Project/Site: [none]

TestAmerica Job ID: NUF4130

Client Sample ID: 378 Aspen

Date Collected: 06/23/11 12:15 Date Received: 06/25/11 08:50 Lab Sample ID: NUF4130-03

Matrix: Soil

Percent Solids: 72.3

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	0.0213		0.00261	0.00143	mg/kg dry	Ø	06/23/11 12:15	06/30/11 16:02	1.00
Surrogate	% Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
1,2-Dichloroethane-d4	114	-	67 - 138				06/23/11 12:15	06/30/11 16:02	1.00
Dibromofluoromethane	112		75 - 125				06/23/11 12:15	06/30/11 16:02	1.00
Toluene-d8	469	ZX	76 - 129				06/23/11 12:15	06/30/11 16:02	1.00
4-Bromofluorobenzene	453	ZX	67 - 147				06/23/11 12:15	06/30/11 16:02	1.00
Method: SW846 8260B - Volatile Or	ganic Comp	ounds by E	PA Method 82	60B - RE	1				
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ethylbenzene	2.46		0.124	0.0608	mg/kg dry	**	06/23/11 12:15	07/01/11 20:03	50.0
Toluene	ND	RL1	0.124	0.0552	mg/kg dry	-	06/23/11 12:15	07/01/11 20:03	50.0
Xylenes, total	0.598		0.310	0.118	mg/kg dry	O	06/23/11 12:15	07/01/11 20:03	50.0
Surrogate	% Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4	97		67 - 138				06/23/11 12:15	07/01/11 20:03	50.0
Dibromofluoromethane	91		75 - 125				06/23/11 12:15	07/01/11 20:03	50.0
Toluene-d8	106		76 - 129				06/23/11 12:15	07/01/11 20:03	50.0
4-Bromofluorobenzene	110		67 - 147				06/23/11 12:15	07/01/11 20:03	50.0
Method: SW846 8260B - Volatile Org	nanic Comp	ounds by F	PA Method 82	60B - RE	,				
Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
Naphthalene	12.1	<u>addinio</u>	0.620		mg/kg dry	- =	06/23/11 12:15	07/05/11 13:33	100
Surrogate	% Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4	93	quantito	67 - 138				06/23/11 12:15	07/05/11 13:33	100
Dibromofluoromethane	96		75 - 125				06/23/11 12:15	07/05/11 13:33	100
Toluene-d8	112		76 - 129				06/23/11 12:15	07/05/11 13:33	100
4-Bromofluorobenzene	107		67 - 147				06/23/11 12:15	07/05/11 13:33	100
Method: SW846 8270D - Polyaroma	tio Hudroon	rhone by El	DA 9270D DE						
Analyte		Qualifier	RL RL		Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	4.07	Qualifier	0.910		mg/kg dry	- 8	06/29/11 10:40	07/01/11 11:46	10.0
Acenaphthylene	ND		0.910		mg/kg dry	O	06/29/11 10:40	07/01/11 11:46	10.0
Anthracene	2.58		0.910		mg/kg dry	0	06/29/11 10:40	07/01/11 11:46	10.0
Benzo (a) anthracene	0.947		0.910		mg/kg dry	O	06/29/11 10:40	07/01/11 11:46	10.0
Benzo (a) pyrene	ND		0.910		mg/kg dry	Ö	06/29/11 10:40	07/01/11 11:46	10.0
Benzo (b) fluoranthene	ND		0.910		mg/kg dry	ö	06/29/11 10:40	07/01/11 11:46	10.0
	ND					0	06/29/11 10:40		
Benzo (g,h,i) perylene	ND		0.910		mg/kg dry	0		07/01/11 11:46	10.0
Benzo (k) fluoranthene			0.910		mg/kg dry		06/29/11 10:40	07/01/11 11:46	10.0
Chrysene	1.53		0.910		mg/kg dry	· O	06/29/11 10:40	07/01/11 11:46	10.0
Dibenz (a,h) anthracene	ND		0.910		mg/kg dry	D A	06/29/11 10:40	07/01/11 11:46	10.0
Fluoranthene	ND		0.910		mg/kg dry	0	06/29/11 10:40	07/01/11 11:46	10.0
Fluorene	14.8		0.910		mg/kg dry	-0	06/29/11 10:40	07/01/11 11:46	10.0
Indeno (1,2,3-cd) pyrene	ND		0.910		mg/kg dry	0	06/29/11 10:40	07/01/11 11:46	10.0
Naphthalene	21.7		0.910		mg/kg dry	-0	06/29/11 10:40	07/01/11 11:46	10.0
Phenanthrene	27.7		0.910		mg/kg dry	0	06/29/11 10:40	07/01/11 11:46	10.0
Pyrene	5.02		0.910	0.313	mg/kg dry	O	06/29/11 10:40	07/01/11 11:46	10.0
Surrogate	% Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Terphenyl-d14	91		18 - 120				06/29/11 10:40	07/01/11 11:46	10.0

Client: EEG - Small Business Group, Inc. (2449)

Project/Site: [none]

TestAmerica Job ID: NUF4130

Client Sample ID: 378 Aspen

Date Collected: 06/23/11 12:15 Date Received: 06/25/11 08:50 Lab Sample ID: NUF4130-03

Matrix: Soil

Percent Solids: 72.3

Method: SW846 8270D - Polyaromatic Hydrocarbons by EPA 8270D - RE1 (Continued	Method: SW846 8270D - Po	olyaromatic Hydrocarbons	by EPA 8270D - RE1	(Continued)
---	--------------------------	--------------------------	--------------------	-------------

Surrogate	% Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	85	14 - 120	06/29/11 10:40	07/01/11 11:46	10.0
Nitrobenzene-d5	112	17 - 120	06/29/11 10:40	07/01/11 11:46	10.0

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1-Methylnaphthalene	71.2		4.55	0.815	mg/kg dry	♦	06/29/11 10:40	07/01/11 12:36	50.0
2-Methylnaphthalene	117		4.55	1.43	mg/kg dry	♦	06/29/11 10:40	07/01/11 12:36	50.0

Madhad, CM/ 040	Camanal	Chaminta	Danamatana
Method: SW-846 -	General	Chemistry	Parameters

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
% Dry Solids	72.3	0.500	0.500	%		07/05/11 13:20	07/06/11 09:24	1.00

TestAmerica Job ID: NUF4130

Client: EEG - Small Business Group, Inc. (2449)

Project/Site: [none]

Method: SW846 8260B - Volatile Organic Compounds by EPA Method 8260B

Disal Disal

Lab Sample ID: 11F7685-BLK1

Matrix: Soil

Analysis Batch: U011774

Client Sample ID: Method Blank
Prep Type: Total
Prep Batch: 11F7685 P

Blank Blank RL MDL Unit Analyte Result Qualifier Analyzed Dil Fac Prepared Benzene ND 0.00200 0.00110 mg/kg wet 06/30/11 09:39 06/30/11 13:16 1.00 Ethylbenzene ND 0.00200 0.000980 mg/kg wet 06/30/11 09:39 06/30/11 13:16 1.00 ND Naphthalene 0.00500 0.00170 mg/kg wet 06/30/11 09:39 06/30/11 13:16 1.00 Toluene ND 0.00200 0.000890 mg/kg wet 06/30/11 09:39 06/30/11 13:16 1.00 ND 0.00500 06/30/11 09:39 06/30/11 13:16 Xylenes, total 0.00190 mg/kg wet 1.00

Blank Blank Surrogate Dil Fac % Recovery Qualifier Limits Prepared Analyzed 1,2-Dichloroethane-d4 67 - 138 06/30/11 09:39 06/30/11 13:16 1.00 102 Dibromofluoromethane 100 75 - 125 06/30/11 09:39 06/30/11 13:16 1.00 Toluene-d8 110 76 - 129 06/30/11 09:39 06/30/11 13:16 1.00 4-Bromofluorobenzene 103 67 - 147 06/30/11 09:39 06/30/11 13:16 1.00

Lab Sample ID: 11F7685-BLK2

Matrix: Soil

Analysis Batch: U011774

Client Sample ID: Method Blank Prep Type: Total

Prep Batch: 11F7685_P

	Blank	Blank							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		0.100	0.0550	mg/kg wet		06/30/11 09:39	06/30/11 13:44	50.0
Ethylbenzene	ND		0.100	0.0490	mg/kg wet		06/30/11 09:39	06/30/11 13:44	50.0
Naphthalene	ND		0.250	0.0850	mg/kg wet		06/30/11 09:39	06/30/11 13:44	50.0
Toluene	ND		0.100	0.0445	mg/kg wet		06/30/11 09:39	06/30/11 13:44	50.0
Xylenes, total	ND		0.250	0.0950	mg/kg wet		06/30/11 09:39	06/30/11 13:44	50.0

	Blank	Blank				
Surrogate	% Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4	98		67 - 138	06/30/11 09:39	06/30/11 13:44	50.0
Dibromofluoromethane	99		75 - 125	06/30/11 09:39	06/30/11 13:44	50.0
Toluene-d8	111		76 - 129	06/30/11 09:39	06/30/11 13:44	50.0
4-Bromofluorobenzene	100		67 - 147	06/30/11 09:39	06/30/11 13:44	50.0

Lab Sample ID: 11F7685-BS1

Matrix: Soil

Analysis Batch: U011774

Client Sample ID: Lab Control Sample Prep Type: Total

Prep Batch: 11F7685_P

Company of the Compan	Spike	LCS	LCS				% Rec.
Analyte	Added	Result	Qualifier	Unit	D	% Rec	Limits
Benzene	50.0	54.1		ug/kg		108	78 - 126
Ethylbenzene	50.0	52.9		ug/kg		106	79 - 130
Naphthalene	50.0	43.2		ug/kg		86	72 - 150
Toluene	50.0	52.7		ug/kg		105	76 - 126
Xylenes, total	150	157		ug/kg		105	80 - 130

	LCS	LCS	
Surrogate	% Recovery	Qualifier	Limits
1,2-Dichloroethane-d4	105		67 - 138
Dibromofluoromethane	102		75 - 125
Toluene-d8	103		76 - 129
4-Bromofluorobenzene	101		67 - 147

Project/Site: [none]

Client: EEG - Small Business Group, Inc. (2449) TestAmerica Job ID: NUF4130

Method: SW846 8260B - Volatile Organic Compounds by EPA Method 8260B (Continued)

Lab Sample ID: 11F7685-BSD1 Matrix: Soil

Analysis Batch: U011774

Client Sample ID: Lab Control Sample Dup

Prep Type: Total

Prep Batch: 11F7685 P

rinary old Battoni Goliffia							ob maro.		
	Spike	LCS Dup	LCS Dup				% Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	% Rec	Limits	RPD	Limit
Benzene	50.0	52.7		ug/kg		105	78 - 126	3	50
Ethylbenzene	50.0	51.9		ug/kg		104	79 - 130	2	50
Naphthalene	50.0	38.1		ug/kg		76	72 - 150	12	50
Toluene	50.0	52.2		ug/kg		104	76 - 126	0.9	50
Xylenes, total	150	152		ug/kg		102	80 - 130	3	50

LCS Dup LCS Dup

Surrogate	% Recovery	Qualifier	Limits
1.2-Dichloroethane-d4	105	Quantito	67 - 138
Dibromofluoromethane	101		75 - 125
Toluene-d8	104		76 - 129
4-Bromofluorobenzene	102		67 - 147

Lab Sample ID: 11F7685-MS1

Matrix: Soil

Analysis Batch: U011774

Client Sample ID: Matrix Spike

Prep Type: Total

Prep Batch: 11F7685_P

	Sample	Sample	Spike	Matrix Spike	Matrix Spi	ke			% Rec.
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	% Rec	Limits
Benzene	0.0115		0.0462	0.0454		mg/kg wet	-	73	42 - 141
Ethylbenzene	0.00440		0.0462	0.0427		mg/kg wet		83	21 - 165
Naphthalene	ND		0.0462	0.0142		mg/kg wet		31	10 - 160
Toluene	ND		0.0462	0.0407		mg/kg wet		88	45 - 145
Xylenes, total	0.00331		0.139	0.115		mg/kg wet		80	31 - 159

Matrix Spike Matrix Spike

Surrogate	% Recovery	Qualifier	Limits
1,2-Dichloroethane-d4	104		67 - 138
Dibromofluoromethane	99		75 - 125
Toluene-d8	124		76 - 129
4-Bromofluorobenzene	114		67 - 147

Lab Sample ID: 11F7685-MSD1

Matrix: Soil

Analysis Batch: U011774

Client Sample ID: Matrix Spike Duplicate

Prep Type: Total

Prep Batch: 11F7685_P

	Sample	Sample	mple Spike Ma		Matrix Spike Dut				% Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	% Rec	Limits	RPD	Limit
Benzene	0.0115		0.0426	0.0436		mg/kg wet		75	42 - 141	4	50
Ethylbenzene	0.00440		0.0426	0.0412		mg/kg wet		86	21 - 165	3	50
Naphthalene	ND		0.0426	0.0140		mg/kg wet		33	10 - 160	1	50
Toluene	ND		0.0426	0.0392		mg/kg wet		92	45 - 145	4	50
Xylenes, total	0.00331		0.128	0.110	21	mg/kg wet		84	31 - 159	4	50

Matrix Spike Dup Matrix Spike Dup

Surrogate	% Recovery	Qualifier	Limits
1,2-Dichloroethane-d4	104		67 - 138
Dibromofluoromethane	99		75 - 125
Toluene-d8	131	ZX	76 - 129
4-Bromofluorobenzene	119		67 - 147

Project/Site: [none]

Method: SW846 8260B - Volatile Organic Compounds by EPA Method 8260B (Continued)

Lab Sample ID: 11G0157-BLK1 Matrix: Soil

Analysis Batch: U011790

Client Sample ID: Method Blank Prep Type: Total

Prep Batch: 11G0157_P

TestAmerica Job ID: NUF4130

	Blank	Blank							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		0.00200	0.00110	mg/kg wet		07/01/11 10:03	07/01/11 12:22	1.00
Ethylbenzene	ND		0.00200	0.000980	mg/kg wet		07/01/11 10:03	07/01/11 12:22	1.00
Naphthalene	ND		0.00500	0.00170	mg/kg wet		07/01/11 10:03	07/01/11 12:22	1.00
Toluene	ND		0.00200	0.000890	mg/kg wet		07/01/11 10:03	07/01/11 12:22	1.00
Xylenes, total	ND		0.00500	0.00190	mg/kg wet		07/01/11 10:03	07/01/11 12:22	1.00

Surrogate	% Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4	100		67 - 138	07/01/11 10:03	07/01/11 12:22	1.00
Dibromofluoromethane	95		75 - 125	07/01/11 10:03	07/01/11 12:22	1.00
Toluene-d8	109		76 - 129	07/01/11 10:03	07/01/11 12:22	1.00
4-Bromofluorobenzene	102		67 - 147	07/01/11 10:03	07/01/11 12:22	1.00

Lab Sample ID: 11G0157-BLK2

Matrix: Soil

Analysis Batch: U011790

Client Sample ID: Method Blank

Prep Type: Total Prep Batch: 11G0157_P

	Blank	Blank							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		0.100	0.0550	mg/kg wet		07/01/11 10:03	07/01/11 12:50	50.0
Ethylbenzene	ND		0.100	0.0490	mg/kg wet		07/01/11 10:03	07/01/11 12:50	50.0
Naphthalene	ND		0.250	0.0850	mg/kg wet		07/01/11 10:03	07/01/11 12:50	50.0
Toluene	ND		0.100	0.0445	mg/kg wet		07/01/11 10:03	07/01/11 12:50	50.0
Xylenes, total	ND		0.250	0.0950	mg/kg wet		07/01/11 10:03	07/01/11 12:50	50.0

Blank Blank

Surrogate	% Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4	102		67 - 138	07/01/11 10:03	07/01/11 12:50	50.0
Dibromofluoromethane	100		75 - 125	07/01/11 10:03	07/01/11 12:50	50.0
Toluene-d8	105		76 - 129	07/01/11 10:03	07/01/11 12:50	50.0
4-Bromofluorobenzene	102		67 - 147	07/01/11 10:03	07/01/11 12:50	50.0

Lab Sample ID: 11G0157-BS1

Matrix: Soil

Analysis Batch: U011790

Client Sample ID: Lab Control Sample

Prep Type: Total

Prep Batch: 11G0157_P

	Spike	LCS	LCS				% Rec.	
Analyte	Added	Result	Qualifier	Unit	D	% Rec	Limits	
Benzene	50.0	52.3		ug/kg		105	78 - 126	
Ethylbenzene	50.0	52.6		ug/kg		105	79 - 130	
Naphthalene	50.0	44.9		ug/kg		90	72 - 150	
Toluene	50.0	55.0		ug/kg		110	76 - 126	
Xylenes, total	150	157		ug/kg		105	80 _ 130	

LCS LCS

Surrogate	% Recovery	Qualifier	Limits
1,2-Dichloroethane-d4	102		67 - 138
Dibromofluoromethane	100		75 - 125
Toluene-d8	109		76 - 129
4-Bromofluorobenzene	103		67 - 147

Project/Site: [none]

Method: SW846 8260B - Volatile Organic Compounds by EPA Method 8260B (Continued)

Lab Sample ID: 11G0157-MS1

Matrix: Soil

Analysis Batch: U011790

Client Sample ID: Matrix Spike

Prep Type: Total

Prep Batch: 11G0157 P

Tillary Cic Battern Buttern									
	Sample	Sample	Spike	Matrix Spike	Matrix Spil	ke			% Rec.
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	% Rec	Limits
Benzene	0.111		2.50	3.08		mg/kg wet	_	119	42 - 141
Ethylbenzene	1.05		2.50	4.19		mg/kg wet		126	21 - 165
Naphthalene	0.245		2.50	2.71		mg/kg wet		99	10 - 160
Toluene	1.21		2.50	4.43		mg/kg wet		129	45 - 145
Xylenes, total	6.25		7.50	15.7		mg/kg wet		126	31 - 159

Matrix Spike Matrix Spike

Surrogate	% Recovery	Qualifier	Limits
1,2-Dichloroethane-d4	99		67 - 138
Dibromofluoromethane	97		75 - 125
Toluene-d8	110		76 - 129
4-Bromofluorobenzene	100		67 - 147

Lab Sample ID: 11G0157-MSD1

Matrix: Soil

Analysis Batch: U011790

Client Sample ID: Matrix Spike Duplicate

Prep Type: Total

Prep Batch: 11G0157_P

Sample	Sample	Spike	Matrix Spike Dup	Matrix Spike Dut				% Rec.		RPD
Result	Qualifier	Added	Result	Qualifier	Unit	D	% Rec	Limits	RPD	Limit
0.111		2.50	3.00		mg/kg wet	-	115	42 - 141	3	50
1.05		2.50	4.02		mg/kg wet		119	21 - 165	4	50
0.245		2.50	2.83		mg/kg wet		104	10 - 160	4	50
1.21		2.50	4.09		mg/kg wet		115	45 - 145	8	50
6.25		7.50	15.0		mg/kg wet		116	31 - 159	5	50
	Result 0.111 1.05 0.245 1.21	1.05 0.245 1.21	Result Qualifier Added 0.111 2.50 1.05 2.50 0.245 2.50 1.21 2.50	Result Qualifier Added Result 0.111 2.50 3.00 1.05 2.50 4.02 0.245 2.50 2.83 1.21 2.50 4.09	Result Qualifier Added Result Qualifier 0.111 2.50 3.00 1.05 2.50 4.02 0.245 2.50 2.83 1.21 2.50 4.09	Result 0.111 Qualifier Added 2.50 Result 3.00 Qualifier mg/kg wet mg/kg wg/kg	Result Qualifier Added Result Qualifier Unit D 0.111 2.50 3.00 mg/kg wet 1.05 2.50 4.02 mg/kg wet 0.245 2.50 2.83 mg/kg wet 1.21 2.50 4.09 mg/kg wet	Result Qualifier Added Result Qualifier Unit D % Rec 0.111 2.50 3.00 mg/kg wet 115 1.05 2.50 4.02 mg/kg wet 119 0.245 2.50 2.83 mg/kg wet 104 1.21 2.50 4.09 mg/kg wet 115	Result Qualifier Added Result Qualifier Unit D % Rec Limits 0.111 2.50 3.00 mg/kg wet 115 42 - 141 1.05 2.50 4.02 mg/kg wet 119 21 - 165 0.245 2.50 2.83 mg/kg wet 104 10 - 160 1.21 2.50 4.09 mg/kg wet 115 45 - 145	Result Qualifier Added Added Result Qualifier Unit Unit Unit Unit Unit Unit Unit Unit

Matrix Spike Dup Matrix Spike Dup

Surrogate	% Recovery	Qualifier	Limits
1,2-Dichloroethane-d4	101		67 - 138
Dibromofluoromethane	99		75 - 125
Toluene-d8	103		76 - 129
4-Bromofluorobenzene	103		67 - 147

Lab Sample ID: 11G0699-BLK1

Matrix: Soil

Analysis Batch: U012045

Client Sample ID: Method Blank

Prep Type: Total

Prep Batch: 11G0699_P

	Blank	Blank							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		0.00200	0.00110	mg/kg wet		07/05/11 09:51	07/05/11 12:37	1.00
Ethylbenzene	ND		0.00200	0.000980	mg/kg wet		07/05/11 09:51	07/05/11 12:37	1.00
Naphthalene	ND		0.00500	0.00170	mg/kg wet		07/05/11 09:51	07/05/11 12:37	1.00
Toluene	ND		0.00200	0.000890	mg/kg wet		07/05/11 09:51	07/05/11 12:37	1.00
Xylenes, total	ND		0.00500	0.00190	mg/kg wet		07/05/11 09:51	07/05/11 12:37	1.00

	Blank Blank				
Surrogate	% Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4	101	67 - 138	07/05/11 09:51	07/05/11 12:37	1.00
Dibromofluoromethane	102	75 - 125	07/05/11 09:51	07/05/11 12:37	1.00
Toluene-d8	109	76 - 129	07/05/11 09:51	07/05/11 12:37	1.00
4-Bromofluorobenzene	102	67 - 147	07/05/11 09:51	07/05/11 12:37	1.00

Project/Site: [none]

Method: SW846 8260B - Volatile Organic Compounds by EPA Method 8260B (Continued)

Lab Sample ID: 11G0699-BLK2

Matrix: Soil

Analysis Batch: U012045

Client Sample ID: Method Blank

Prep Type: Total

Prep Batch: 11G0699_P

	Blank	Blank							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		0.100	0.0550	mg/kg wet		07/05/11 09:51	07/05/11 13:05	50.0
Ethylbenzene	ND		0.100	0.0490	mg/kg wet		07/05/11 09:51	07/05/11 13:05	50.0
Naphthalene	ND		0.250	0.0850	mg/kg wet		07/05/11 09:51	07/05/11 13:05	50.0
Toluene	ND		0.100	0.0445	mg/kg wet		07/05/11 09:51	07/05/11 13:05	50.0
Xylenes, total	ND		0.250	0.0950	mg/kg wet		07/05/11 09:51	07/05/11 13:05	50.0

Blank Blank

Surrogate	% Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4	91		67 - 138	07/05/11 09:51	07/05/11 13:05	50.0
Dibromofluoromethane	94		75 - 125	07/05/11 09:51	07/05/11 13:05	50.0
Toluene-d8	110		76 - 129	07/05/11 09:51	07/05/11 13:05	50.0
4-Bromofluorobenzene	104		67 - 147	07/05/11 09:51	07/05/11 13:05	50.0

Lab Sample ID: 11G0699-BS1

Matrix: Soil

Analysis Batch: U012045

Client Sample ID: Lab Control Sample

Prep Type: Total

Prep Batch: 11G0699_P

Spike	LCS	LCS				% Rec.	
Added	Result	Qualifier	Unit	D	% Rec	Limits	
50.0	50.0		ug/kg		100	78 - 126	
50.0	49.7		ug/kg		99	79 - 130	
50.0	47.0		ug/kg		94	72 - 150	
50.0	50.2		ug/kg		100	76 - 126	
150	146		ug/kg		98	80 - 130	
	50.0 50.0 50.0 50.0	Added Result 50.0 50.0 50.0 49.7 50.0 47.0 50.0 50.2	Added Result Qualifier 50.0 50.0 50.0 49.7 50.0 47.0 50.0 50.2	Added Result 50.0 Qualifier Unit ug/kg 50.0 50.0 ug/kg 50.0 49.7 ug/kg 50.0 47.0 ug/kg 50.0 50.2 ug/kg	Added Result Qualifier Unit D 50.0 50.0 ug/kg 50.0 49.7 ug/kg 50.0 47.0 ug/kg 50.0 50.2 ug/kg	Added Result 0ualifier Unit 0 % Rec 50.0 50.0 ug/kg 100 50.0 49.7 ug/kg 99 50.0 47.0 ug/kg 94 50.0 50.2 ug/kg 100	Added Result Qualifier Unit D % Rec Limits 50.0 50.0 ug/kg 100 78 - 126 50.0 49.7 ug/kg 99 79 - 130 50.0 47.0 ug/kg 94 72 - 150 50.0 50.2 ug/kg 100 76 - 126

LCS LCS

Surrogate	% Recovery	Qualifier	Limits
1,2-Dichloroethane-d4	102		67 - 138
Dibromofluoromethane	100		75 - 125
Toluene-d8	103		76 - 129
4-Bromofluorobenzene	104		67 - 147

Lab Sample ID: 11G0699-BSD1

Matrix: Soil

Analysis Batch: U012045

Client Sample ID: Lab Control Sample Dup

Prep Type: Total

Prep Batch: 11G0699 P

	Spike	LCS Dup	LCS Dup				% Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	% Rec	Limits	RPD	Limit
Benzene	50.0	52.9		ug/kg		106	78 - 126	6	50
Ethylbenzene	50.0	53.1		ug/kg		106	79 - 130	7	50
Naphthalene	50.0	49.4		ug/kg		99	72 - 150	5	50
Toluene	50.0	56.1		ug/kg		112	76 - 126	11	50
Xylenes, total	150	158		ug/kg		105	80 - 130	8	50

LCS	Dup	LCS	Dun
-00	Pup		Pup

Surrogate	% Recovery	Qualifier	Limits
1,2-Dichloroethane-d4	102	-	67 - 138
Dibromofluoromethane	101		75 - 125
Toluene-d8	110		76 - 129
4-Bromofluorobenzene	105		67 - 147

Project/Site: [none]

Method: SW846 8260B - Volatile Organic Compounds by EPA Method 8260B (Continued)

Lab Sample ID: 11G0699-MS1

Client Sample ID: Matrix Spike

Matrix: Soil Prep Type: Total Analysis Batch: U012045 Prep Batch: 11G0699_P

	Sample	Sample	Spike	watrix Spike	watrix opi	Ke			% Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	% Rec	Limits	
Benzene	ND		0.0746	0.0668		mg/kg dry	100	90	42 - 141	
Ethylbenzene	ND		0.0746	0.0707		mg/kg dry	Ø	95	21 - 165	
Naphthalene	ND		0.0746	0.0246		mg/kg dry	Ø.	33	10 - 160	
Toluene	ND		0.0746	0.0742		mg/kg dry	O	99	45 - 145	
Xylenes, total	ND		0.224	0.202		mg/kg dry	100	90	31 - 159	

Matrix Spike Matrix Spike

Surrogate	% Recovery	Qualifier	Limits
1,2-Dichloroethane-d4	99		67 - 138
Dibromofluoromethane	97		75 - 125
Toluene-d8	110		76 - 129
4-Bromofluorobenzene	106		67 - 147

Lab Sample ID: 11G0699-MSD1

Matrix: Soil

Analysis Batch: U012045

Client Sample ID: Matrix Spike Duplicate

Prep Type: Total

Prep Batch: 11G0699_P

A VIOLENCE OF THE SECOND SECON							A STATE OF THE PARTY OF THE PAR		-		
	Sample	Sample		Matrix Spike Dup	Matrix Spi	ke Duţ			% Rec.		RPD
Analyte	Result	Qualifier		Result	Qualifier	Unit	D	% Rec	Limits	RPD	Limit
Benzene	ND		0.0710	0.0635		mg/kg dry	Ø.	90	42 - 141	5	50
Ethylbenzene	ND		0.0710	0.0649		mg/kg dry	Ø.	91	21 - 165	9	50
Naphthalene	ND		0.0710	0.0237		mg/kg dry	Ø.	33	10 - 160	4	50
Toluene	ND		0.0710	0.0657		mg/kg dry	O	93	45 - 145	12	50
Xylenes, total	ND		0.213	0.187		mg/kg dry	302	88	31 - 159	8	50

Matrix Spike Dup Matrix Spike Dup

Surrogate	% Recovery	Qualifier	Limits
1,2-Dichloroethane-d4	102		67 - 138
Dibromofluoromethane	97		75 - 125
Toluene-d8	103		76 - 129
4-Bromofluorobenzene	104		67 - 147

Method: SW846 8270D - Polyaromatic Hydrocarbons by EPA 8270D

Lab Sample ID: 11F6738-BLK1

Matrix: Soil

Client Sample ID: Method Blank
Prep Type: Total

Analysis Batch: 11F6738 Prep Batch: 11F6738_P

	Blank	Blank							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	ND		0.0670	0.0140	mg/kg wet		06/29/11 10:40	06/30/11 14:16	1.00
Acenaphthylene	ND		0.0670	0.0200	mg/kg wet		06/29/11 10:40	06/30/11 14:16	1.00
Anthracene	ND		0.0670	0.00900	mg/kg wet		06/29/11 10:40	06/30/11 14:16	1.00
Benzo (a) anthracene	ND		0.0670	0.0110	mg/kg wet		06/29/11 10:40	06/30/11 14:16	1.00
Benzo (a) pyrene	ND		0.0670	0.00800	mg/kg wet		06/29/11 10:40	06/30/11 14:16	1.00
Benzo (b) fluoranthene	ND		0.0670	0.0380	mg/kg wet		06/29/11 10:40	06/30/11 14:16	1.00
Benzo (g,h,i) perylene	ND		0.0670	0.00900	mg/kg wet		06/29/11 10:40	06/30/11 14:16	1.00
Benzo (k) fluoranthene	ND		0.0670	0.0370	mg/kg wet		06/29/11 10:40	06/30/11 14:16	1.00
Chrysene	ND		0.0670	0.0310	mg/kg wet		06/29/11 10:40	06/30/11 14:16	1.00
Dibenz (a,h) anthracene	ND		0.0670	0.0150	mg/kg wet		06/29/11 10:40	06/30/11 14:16	1.00
Fluoranthene	ND		0.0670	0.0110	mg/kg wet		06/29/11 10:40	06/30/11 14:16	1.00
Fluorene	ND		0.0670	0.0200	mg/kg wet		06/29/11 10:40	06/30/11 14:16	1.00
Indeno (1,2,3-cd) pyrene	ND		0,0670	0.0310	mg/kg wet		06/29/11 10:40	06/30/11 14:16	1.00

TestAmerica Nashville

Project/Site: [none]

Method: SW846 8270D - Polyaromatic Hydrocarbons by EPA 8270D (Continued)

Lab Sample ID: 11F6738-BLK1

Matrix: Soil

Analysis Batch: 11F6738

Client Sample ID: Method Blank

Prep Type: Total

Prep Batch: 11F6738_P

	Blank	Blank							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	ND		0.0670	0.0140	mg/kg wet		06/29/11 10:40	06/30/11 14:16	1.00
Phenanthrene	ND		0.0670	0.0100	mg/kg wet		06/29/11 10:40	06/30/11 14:16	1.00
Pyrene	ND		0.0670	0.0230	mg/kg wet		06/29/11 10:40	06/30/11 14:16	1.00
1-Methylnaphthalene	ND		0.0670	0.0120	mg/kg wet		06/29/11 10:40	06/30/11 14:16	1.00
2-Methylnaphthalene	ND		0.0670	0.0210	mg/kg wet		06/29/11 10:40	06/30/11 14:16	1.00

Blank Blank

Surrogate	% Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Terphenyl-d14	82		18 - 120	06/29/11 10:40	06/30/11 14:16	1.00
2-Fluorobiphenyl	71		14 - 120	06/29/11 10:40	06/30/11 14:16	1.00
Nitrobenzene-d5	71		17 - 120	06/29/11 10:40	06/30/11 14:16	1.00

Lab Sample ID: 11F6738-BS1

Matrix: Soil

Analysis Batch: 11F6738

Client Sample ID: Lab Control Sample

Prep Type: Total

Prep Batch: 11F6738_P

	Spike	LCS	LCS				% Rec.	
Analyte	Added	Result	Qualifier	Unit	D	% Rec	Limits	
Acenaphthene	1.67	1.33		mg/kg wet	_	80	49 - 120	
Acenaphthylene	1.67	1.43		mg/kg wet		86	52 - 120	
Anthracene	1.67	1.57		mg/kg wet		94	58 - 120	
Benzo (a) anthracene	1.67	1.51		mg/kg wet		91	57 - 120	
Benzo (a) pyrene	1.67	1.54		mg/kg wet		92	55 - 120	
Benzo (b) fluoranthene	1.67	1.63		mg/kg wet		98	51 - 123	
Benzo (g,h,i) perylene	1.67	1.68		mg/kg wet		101	49 - 121	
Benzo (k) fluoranthene	1.67	1.33		mg/kg wet		80	42 - 129	
Chrysene	1.67	1.42		mg/kg wet		85	55 - 120	
Dibenz (a,h) anthracene	1.67	1.65		mg/kg wet		99	50 - 123	
Fluoranthene	1.67	1.56		mg/kg wet		94	58 - 120	
Fluorene	1.67	1.48		mg/kg wet		89	54 - 120	
Indeno (1,2,3-cd) pyrene	1.67	1.67		mg/kg wet		100	50 - 122	
Naphthalene	1.67	1.41		mg/kg wet		85	28 - 120	
Phenanthrene	1.67	1.52		mg/kg wet		91	56 - 120	
Pyrene	1.67	1.51		mg/kg wet		90	56 - 120	
1-Methylnaphthalene	1.67	1.17		mg/kg wet		70	36 - 120	
2-Methylnaphthalene	1.67	1.21		mg/kg wet		73	36 - 120	

LCS LCS

Surrogate	% Recovery	Qualifier	Limits
Terphenyl-d14	90	-	18 - 120
2-Fluorobiphenyl	73		14 - 120
Nitrobenzene-d5	64		17 - 120

Lab Sample ID: 11F6738-MS1

Matrix: Soil

Analysis Batch: 11F6738

Client Sample ID: 373 Aspen

Prep Type: Total

Prep Batch: 11F6738_P

	Sample	Sample	Spike	Matrix Spike	Matrix Spi	ke			% Rec.
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	% Rec	Limits
Acenaphthene	ND		1.72	1.14		mg/kg dry	*	66	42 - 120
Acenaphthylene	ND		1.72	1.24		mg/kg dry	0	72	32 - 120
Anthracene	ND		1.72	1.42		mg/kg dry	Ø	83	10 - 200
Benzo (a) anthracene	ND		1.72	1.28		mg/kg dry	Ø.	74	41 - 120

07/10/2011

Project/Site: [none]

Matrix: Soil

Method: SW846 8270D - Polyaromatic Hydrocarbons by EPA 8270D (Continued)

Lab Sample ID: 11F6738-MS1

Analysis Batch: 11F6738

Client Sample ID: 373 Aspen Prep Type: Total Prep Batch: 11F6738_P

	Sample	Sample	Spike	Matrix Spike	Matrix Spi	ke			% Rec.
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	% Rec	Limits
Benzo (a) pyrene	ND		1.72	1.32		mg/kg dry	Ø.	77	33 - 121
Benzo (b) fluoranthene	ND		1.72	1.21		mg/kg dry	**	70	26 - 137
Benzo (g,h,i) perylene	ND		1.72	1.48		mg/kg dry	*	86	21 - 124
Benzo (k) fluoranthene	ND		1.72	1.41		mg/kg dry	*	82	14 - 140
Chrysene	ND		1.72	1.29		mg/kg dry	袋	75	28 - 123
Dibenz (a,h) anthracene	ND		1.72	1.45		mg/kg dry	O	84	25 - 127
Fluoranthene	ND		1.72	1.46		mg/kg dry	0	85	38 - 120
Fluorene	ND		1.72	1.30		mg/kg dry	**	76	41 - 120
Indeno (1,2,3-cd) pyrene	ND		1.72	1.45		mg/kg dry	- 30	85	25 - 123
Naphthalene	ND		1.72	1.23		mg/kg dry	\$	72	25 - 120
Phenanthrene	ND		1.72	1.32		mg/kg dry	袋	77	37 - 120
Pyrene	ND		1.72	1.31		mg/kg dry	**	76	29 - 125
1-Methylnaphthalene	ND		1.72	1.04		mg/kg dry	0	60	19 - 120
2-Methylnaphthalene	ND		1.72	1.13		mg/kg dry	*	66	11 - 120

 Surrogate
 % Recovery
 Qualifier
 Limits

 Terphenyl-d14
 80
 18 - 120

 2-Fluorobiphenyl
 62
 14 - 120

 Nitrobenzene-d5
 58
 17 - 120

Lab Sample ID: 11F6738-MSD1

Matrix: Soil

Analysis Batch: 11F6738

Client Sample ID: 373 Aspen Prep Type: Total

Prep Batch: 11F6738_P

Matrix Spike Dup Matrix Spike Dup % Rec. RPD Sample Sample Spike Analyte Qualifier Added Result Qualifier Unit % Rec Limits RPD Limit Result D Acenaphthene ND 1.71 1.20 mg/kg dry 70 42 - 120 5 40 Acenaphthylene ND 1.71 1.32 mg/kg dry Ø. 77 32 - 120 6 30 ND 夺 10 - 200 84 0.4 50 Anthracene 1.71 1.43 mg/kg dry ND 0 79 41 - 120 30 Benzo (a) anthracene 1.71 1.34 mg/kg dry 4 80 33 - 121 4 33 Benzo (a) pyrene ND 1.71 1.37 mg/kg dry ND 25 79 26 - 137 42 Benzo (b) fluoranthene 1.71 1.35 mg/kg dry 袋 32 ND 89 21 - 124 3 Benzo (g,h,i) perylene 1.71 1.52 mg/kg dry 22 Benzo (k) fluoranthene ND 1.71 1.32 mg/kg dry 77 14 - 140 7 39 ND 1.71 mg/kg dry 77 28 - 123 2 34 1.32 Chrysene 袋 ND 1.48 87 25 - 127 2 31 Dibenz (a,h) anthracene 1.71 mg/kg dry 华 84 38 - 120 35 Fluoranthene ND 1.44 mg/kg dry 1 1.71 32 Fluorene ND 1.71 1.28 mg/kg dry 75 41 - 120 2 37 32 2 32 ND 1.71 1.49 87 25 - 123 Indeno (1,2,3-cd) pyrene mg/kg dry ø 77 7 25 - 120 42 Naphthalene ND 1.71 1.32 mg/kg dry 25 79 37 - 120 2 32 Phenanthrene ND 1.71 1.35 mg/kg dry 0 ND 1.29 75 29 - 125 2 40 Pyrene 1.71 mg/kg dry ND 1.05 袋 62 19 - 120 1 45 1-Methylnaphthalene 1.71 mg/kg dry 35 ND 1.13 mg/kg dry 66 11 - 120 0.3 50 2-Methylnaphthalene 1.71

	Matrix Spike Dup	Matrix Spike	Dup
Surrogate	% Recovery	Qualifier	Limits
Terphenyl-d14	79		18 - 120
2-Fluorobiphenyl	66		14 - 120
Nitrobenzene-d5	60		17 - 120

QC Sample Results

Client: EEG - Small Business Group, Inc. (2449)

Project/Site: [none]

TestAmerica Job ID: NUF4130

Method: SW-846 - General Chemistry Parameters

Lab Sample ID: 11G0657-DUP1 Client Sample ID: Duplicate
Matrix: Soil Prep Type: Total

Matrix: Soil Prep Type: Total Analysis Batch: 11G0657 Prep Batch: 11G0657_P

Sample Sample Duplicate Duplicate RPD
Analyte Result Qualifier Result Qualifier Unit D RPD Limit

 Analyte
 Result
 Qualifier
 Result
 Qualifier
 Unit
 D
 RPD
 Limit

 % Dry Solids
 83.0
 81.6
 %
 2
 20

QC Association Summary

Client: EEG - Small Business Group, Inc. (2449) Project/Site: [none]

TestAmerica Job ID: NUF4130

GCMS Volatiles

Analysis Batch: U011774

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
11F7685-BS1	Lab Control Sample	Total	Soil	SW846 8260B	11F7685_P
11F7685-BSD1	Lab Control Sample Dup	Total	Soil	SW846 8260B	11F7685_P
11F7685-BLK1	Method Blank	Total	Soil	SW846 8260B	11F7685_P
11F7685-BLK2	Method Blank	Total	Soil	SW846 8260B	11F7685_P
NUF4130-01	373 Aspen	Total	Soil	SW846 8260B	11F7685_P
NUF4130-02	337 Ash	Total	Soil	SW846 8260B	11F7685_P
NUF4130-03	378 Aspen	Total	Soil	SW846 8260B	11F7685_P
11F7685-MS1	Matrix Spike	Total	Soil	SW846 8260B	11F7685_P
11F7685-MSD1	Matrix Spike Duplicate	Total	Soil	SW846 8260B	11F7685_P

Analysis Batch: U011790

Prep Batch
11G0157_P
3 3 3

Analysis Batch: U012045

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
11G0699-BS1	Lab Control Sample	Total	Soil	SW846 8260B	11G0699_P
11G0699-BSD1	Lab Control Sample Dup	Total	Soil	SW846 8260B	11G0699_P
11G0699-BLK1	Method Blank	Total	Soil	SW846 8260B	11G0699_P
11G0699-BLK2	Method Blank	Total	Soil	SW846 8260B	11G0699_P
NUF4130-03 - RE2	378 Aspen	Total	Soil	SW846 8260B	11G0699_P
11G0699-MS1	Matrix Spike	Total	Soil	SW846 8260B	11G0699_P
11G0699-MSD1	Matrix Spike Duplicate	Total	Soil	SW846 8260B	11G0699_P

Prep Batch: 11F7685_P

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
11F7685-BS1	Lab Control Sample	Total	Soil	EPA 5035	
11F7685-BSD1	Lab Control Sample Dup	Total	Soil	EPA 5035	
11F7685-BLK1	Method Blank	Total	Soil	EPA 5035	
11F7685-BLK2	Method Blank	Total	Soil	EPA 5035	
NUF4130-01	373 Aspen	Total	Soil	EPA 5035	
NUF4130-02	337 Ash	Total	Soil	EPA 5035	
NUF4130-03	378 Aspen	Total	Soil	EPA 5035	
11F7685-MS1	Matrix Spike	Total	Soil	EPA 5035	
11F7685-MSD1	Matrix Spike Duplicate	Total	Soil	EPA 5035	

Prep Batch: 11G0157_P

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
11G0157-BS1	Lab Control Sample	Total	Soil	EPA 5035	
11G0157-BLK1	Method Blank	Total	Soil	EPA 5035	
11G0157-BLK2	Method Blank	Total	Soil	EPA 5035	
NUF4130-03 - RE1	378 Aspen	Total	Soil	EPA 5035	
11G0157-MS1	Matrix Spike	Total	Soil	EPA 5035	
11G0157-MSD1	Matrix Spike Duplicate	Total	Soil	EPA 5035	

QC Association Summary

Client: EEG - Small Business Group, Inc. (2449)

Project/Site: [none]

TestAmerica Job ID: NUF4130

GCMS Volatiles (Continued)

Prep Batch: 11G0699_P

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
11G0699-BS1	Lab Control Sample	Total	Soil	EPA 5035	
11G0699-BSD1	Lab Control Sample Dup	Total	Soil	EPA 5035	
11G0699-BLK1	Method Blank	Total	Soil	EPA 5035	
11G0699-BLK2	Method Blank	Total	Soil	EPA 5035	
NUF4130-03 - RE2	378 Aspen	Total	Soil	EPA 5035	
11G0699-MS1	Matrix Spike	Total	Soil	EPA 5035	
11G0699-MSD1	Matrix Spike Duplicate	Total	Soil	EPA 5035	

GCMS Semivolatiles

Analysis Batch: 11F6738

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
11F6738-BLK1	Method Blank	Total	Soil	SW846 8270D	11F6738_P
11F6738-BS1	Lab Control Sample	Total	Soil	SW846 8270D	11F6738_P
11F6738-MS1	373 Aspen	Total	Soil	SW846 8270D	11F6738_P
11F6738-MSD1	373 Aspen	Total	Soil	SW846 8270D	11F6738_P
NUF4130-01	373 Aspen	Total	Soil	SW846 8270D	11F6738_P
NUF4130-02	337 Ash	Total	Soil	SW846 8270D	11F6738_P
NUF4130-03 - RE1	378 Aspen	Total	Soil	SW846 8270D	11F6738_P
NUF4130-03 - RE2	378 Aspen	Total	Soil	SW846 8270D	11F6738_P

Prep Batch: 11F6738_P

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
11F6738-BLK1	Method Blank	Total	Soil	EPA 3550C	
11F6738-BS1	Lab Control Sample	Total	Soil	EPA 3550C	
11F6738-MS1	373 Aspen	Total	Soil	EPA 3550C	
11F6738-MSD1	373 Aspen	Total	Soil	EPA 3550C	
NUF4130-01	373 Aspen	Total	Soil	EPA 3550C	
NUF4130-02	337 Ash	Total	Soil	EPA 3550C	
NUF4130-03 - RE1	378 Aspen	Total	Soil	EPA 3550C	
NUF4130-03 - RE2	378 Aspen	Total	Soil	EPA 3550C	

Extractions

Analysis Batch: 11G0657

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
11G0657-DUP1	Duplicate	Total	Soil	SW-846	11G0657_P
NUF4130-01	373 Aspen	Total	Soil	SW-846	11G0657_P
NUF4130-02	337 Ash	Total	Soil	SW-846	11G0657_P
NUF4130-03	378 Aspen	Total	Soil	SW-846	11G0657_P

Prep Batch: 11G0657_P

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
11G0657-DUP1	Duplicate	Total	Soil	% Solids	
NUF4130-01	373 Aspen	Total	Soil	% Solids	
NUF4130-02	337 Ash	Total	Soil	% Solids	
NUF4130-03	378 Aspen	Total	Soil	% Solids	

TestAmerica Job ID: NUF4130

Client: EEG - Small Business Group, Inc. (2449)

Project/Site: [none]

Client Sample ID: 373 Aspen

Date Collected: 06/21/11 12:00 Date Received: 06/25/11 08:50 Lab Sample ID: NUF4130-01

Matrix: Soil

Percent Solids: 96.3

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	Or Analyzed	Analyst	Lab
Total	Prep	EPA 5035		1.18	11F7685_P	06/21/11 12:00	TSP	TAL NSH
Total	Analysis	SW846 8260B		1.00	U011774	06/30/11 15:07	KKK	TAL NSH
Total	Prep	EPA 3550C		0.998	11F6738_P	06/29/11 10:40	JJR	TAL NSH
Total	Analysis	SW846 8270D		1.00	11F6738	06/30/11 15:55	BES	TAL NSH
Total	Prep	% Solids		1.00	11G0657_P	07/05/11 13:20	RRS	TAL NSH
Total	Analysis	SW-846		1.00	11G0657	07/06/11 09:24	RRS	TAL NSH

Client Sample ID: 337 Ash

Date Collected: 06/22/11 14:45

Date Received: 06/25/11 08:50

Lab Sample ID: NUF4130-02

Matrix: Soil

Percent Solids: 83.1

Batch	Batch		Dilution	Batch	Prepared		
Туре	Method	Run	Factor	Number	Or Analyzed	Analyst	Lab
Prep	EPA 5035		0.947	11F7685_P	06/22/11 14:45	TSP	TAL NSH
Analysis	SW846 8260B		1.00	U011774	06/30/11 15:34	KKK	TAL NSH
Prep	EPA 3550C		0.999	11F6738_P	06/29/11 10:40	JJR	TAL NSH
Analysis	SW846 8270D		1.00	11F6738	06/30/11 16:20	BES	TAL NSH
Prep	% Solids		1.00	11G0657_P	07/05/11 13:20	RRS	TAL NSH
Analysis	SW-846		1.00	11G0657	07/06/11 09:24	RRS	TAL NSH
	Prep Analysis Prep Analysis Prep	Type Method Prep EPA 5035 Analysis SW846 8260B Prep EPA 3550C Analysis SW846 8270D Prep % Solids	Type Method Run Prep EPA 5035 Analysis SW846 8260B Prep EPA 3550C Analysis SW846 8270D Prep % Solids	Type Method Run Factor Prep EPA 5035 0.947 Analysis SW846 8260B 1.00 Prep EPA 3550C 0.999 Analysis SW846 8270D 1.00 Prep % Solids 1.00	Type Method Run Factor Number Prep EPA 5035 0.947 11F7685_P Analysis SW846 8260B 1.00 U011774 Prep EPA 3550C 0.999 11F6738_P Analysis SW846 8270D 1.00 11F6738 Prep % Solids 1.00 11G0657_P	Type Method Run Factor Number Or Analyzed Prep EPA 5035 0.947 11F7685_P 06/22/11 14:45 Analysis SW846 8260B 1.00 U011774 06/30/11 15:34 Prep EPA 3550C 0.999 11F6738_P 06/29/11 10:40 Analysis SW846 8270D 1.00 11F6738 06/30/11 16:20 Prep % Solids 1.00 11G0657_P 07/05/11 13:20	Type Method Run Factor Number Or Analyzed Analyst Prep EPA 5035 0.947 11F7685_P 06/22/11 14:45 TSP Analysis SW846 8260B 1.00 U011774 06/30/11 15:34 KKK Prep EPA 3550C 0.999 11F6738_P 06/29/11 10:40 JJR Analysis SW846 8270D 1.00 11F6738 06/30/11 16:20 BES Prep % Solids 1.00 11G0657_P 07/05/11 13:20 RRS

Client Sample ID: 378 Aspen

Date Collected: 06/23/11 12:15

Date Received: 06/25/11 08:50

Lab Sample ID: NUF4130-03

Matrix: Soil

Percent Solids: 72.3

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	Or Analyzed	Analyst	Lab
Total	Prep	EPA 5035		0.942	11F7685_P	06/23/11 12:15	TSP	TAL NSH
Total	Analysis	SW846 8260B		1.00	U011774	06/30/11 16:02	KKK	TAL NSH
Total	Prep	EPA 5035	RE1	0.896	11G0157_P	06/23/11 12:15	TSP	TAL NSH
Total	Analysis	SW846 8260B	RE1	50.0	U011790	07/01/11 20:03	KKK	TAL NSH
Total	Prep	EPA 5035	RE2	0.896	11G0699_P	06/23/11 12:15	TSP	TAL NSH
Total	Analysis	SW846 8260B	RE2	100	U012045	07/05/11 13:33	KKK/	TAL NSH
Total	Prep	EPA 3550C	RE1	0.982	11F6738_P	06/29/11 10:40	JJR	TAL NSH
Total	Analysis	SW846 8270D	RE1	10.0	11F6738	07/01/11 11:46	BES	TAL NSH
Total	Prep	EPA 3550C	RE2	0.982	11F6738_P	06/29/11 10:40	JJR	TAL NSH
Total	Analysis	SW846 8270D	RE2	50.0	11F6738	07/01/11 12:36	JLS	TAL NSH
Total	Prep	% Solids		1.00	11G0657_P	07/05/11 13:20	RRS	TAL NSH
Total	Analysis	SW-846		1.00	11G0657	07/06/11 09:24	RRS	TAL NSH

Laboratory References:

TAL NSH = TestAmerica Nashville, 2960 Foster Creighton Road, Nashville, TN 37204, TEL 800-765-0980

Method Summary

Client: EEG - Small Business Group, Inc. (2449)

Project/Site: [none]

TestAmerica Job ID: NUF4130

Method	Method Description	Protocol	Laboratory
SW-846	General Chemistry Parameters		TAL NSH
SW846 8260B	Volatile Organic Compounds by EPA Method 8260B		TAL NSH
SW846 8270D	Polyaromatic Hydrocarbons by EPA 8270D		TAL NSH

Protocol References:

Laboratory References:

TAL NSH = TestAmerica Nashville, 2960 Foster Creighton Road, Nashville, TN 37204, TEL 800-765-0980

Project/Site: [none]

Laboratory	Authority	Program	EPA Region	Certification ID
TestAmerica Nashville	A2LA	ISO/IEC 17025		0453.07
estAmerica Nashville	A2LA	WY UST		453.07
TestAmerica Nashville	AIHA	IHLAP		100790
TestAmerica Nashville	Alabama	State Program	4	41150
estAmerica Nashville	Alaska	Alaska UST	10	UST-087
estAmerica Nashville	Arizona	State Program	9	AZ0473
TestAmerica Nashville	Arkansas	State Program	6	88-0737
estAmerica Nashville	CALA	CALA		3744
estAmerica Nashville	California	NELAC	9	1168CA
estAmerica Nashville	Colorado	State Program	8	N/A
estAmerica Nashville	Connecticut	State Program	1	PH-0220
estAmerica Nashville	Florida	NELAC	4	E87358
estAmerica Nashville	Illinois	NELAC	5	200010
estAmerica Nashville	lowa	State Program	7	131
estAmerica Nashville	Kansas	NELAC	7	E-10229
estAmerica Nashville	Kentucky	Kentucky UST	4	19
estAmerica Nashville	Kentucky	State Program	4	90038
estAmerica Nashville	Louisiana	NELAC	6	LA100011
estAmerica Nashville	Louisiana	NELAC	6	30613
estAmerica Nashville	Maryland	State Program	3	316
estAmerica Nashville	Massachusetts	State Program	1	M-TN032
estAmerica Nashville	Minnesota	NELAC	5	047-999-345
estAmerica Nashville	Mississippi	State Program	4	N/A
estAmerica Nashville	Montana	MT DEQ UST	8	NA
estAmerica Nashville	Nevada	State Program	9	TN00032
estAmerica Nashville	New Hampshire	NELAC	1	2963
estAmerica Nashville	New Jersey	NELAC	2	TN965
estAmerica Nashville	New York	NELAC	2	11342
estAmerica Nashville	North Carolina	North Carolina DENR	4	387
estAmerica Nashville	North Dakota	State Program	8	R-146
estAmerica Nashville	Ohio	OVAP	5	CL0033
estAmerica Nashville	Oklahoma	State Program	6	9412
estAmerica Nashville	Oregon	NELAC	10	TN200001
estAmerica Nashville	Pennsylvania	NELAC	3	68-00585
estAmerica Nashville	Rhode Island	State Program	4	LAO00268
estAmerica Nashville	South Carolina	State Program	4	84009
estAmerica Nashville	South Carolina	State Program	4	84009
estAmerica Nashville	Tennessee	State Program	4	2008
estAmerica Nashville	Texas	NELAC	6	T104704077-09-TX
estAmerica Nashville	USDA	USDA		S-48469
estAmerica Nashville	Utah	NELAC	8	TAN
estAmerica Nashville	Virginia	NELAC Secondary AB	3	460152
estAmerica Nashville	Virginia	State Program	3	00323
estAmerica Nashville	Washington	State Program	10	C789
estAmerica Nashville	West Virginia	West Virginia DEP	3	219
estAmerica Nashville	Wisconsin	State Program	5	998020430

Accreditation may not be offered or required for all methods and analytes reported in this package. Please contact your project manager for the laboratory's current list of certified methods and analytes.

Keinquished by	Relinquished		Special Instructions:					37	33	37	Sample ID /									<u>lo</u>
*	MIN	1001	ructions:					S 17 SOKA	7 Ash	3 ASPEN	e ID / Description		Sampler Signature:	Sampler Name: (Print)	Telephone Number: 843.412.2	Project Mana	City/State	Addr	Client Name/Accou	07/12/11 23 59 07/12/11 23 59
Care	6/24/1						1	6/23/11	6/22/11	6/21/11	Date Sampled		ture: EX	mm) PRA	ber: 843.412.2097	ger: Tom McElwee em	City/State/Zip: Ladson, SC 29456	Address: 10179 Highway 78	Client Name/Account #: EEG - SBG # 2449	Service Service
in a	0							1215 EX	NYS XX	1200 5 X	No. of Contair ers S	hipped	(1st)	H Show		Project Manager: Tom McElwee email: mcelwee@eeginc.net			9	Nashville Division 2960 Foster Creighton Nashville, TN 37204
Received on Lesson les	Received by:	Method of Shipment:						2 2	2	2	NaOH (Orange Label) H ₂ SO ₄ Plastic (Y-Hlow H ₂ SO ₄ Glass(Yellow L) None (Black Label)	Label)	Preservative		Fax No.: (843) 8	<i>(</i>				Phone: 615.726-0177 Toll Free: 800-765-0980 Fax: 615-726-3404
635-118		FEDEX						×	C.	7	Other (Specify) PT/Z, Groundwater Wastewater Drinking Water Studge (Soil Other (specify)		Marrix		1040-66					5-0177 5-0980 5-3404
3:50	ime		Laborat					×	\ \ \	X X	BTEX + Nap:h -	82608	Project #:	Project ID: Laurel Bay Housing Project	TA Quote #:	PO#:	Site State: SC			To assis methods regulato
		VOCs Free of Headspace?	Laboratory Comments:									7.00	Analysis Exp	ay Housing Project		1027		Enforcement Action?	Compliance Monitoring?	To assist us in using the proper analytical methods, is this work being conducted for regulatory purposes?
		*		/							RUSH TAT (Pre-Sci	hedule)						Yes No	Yes No	

ATTACHMENT A

UST Certificate of Disposal

CONTRACTOR

Small Business Group, Inc. 10179 Highway 78 Ladson, SC 29456

TEL (843) 879-0403 FAX (843) 879-0401

TANK ID & LOCATION

UST 378Aspen; 378 Aspen Street, Laurel Bay Housing Area, MCAS Beaufort, S.C.

DISPOSAL LOCATION

Coastal Auto Salvage Co., Inc. 130 Laurel Bay Road Beaufort, S.C. 29906

TYPE OF TANK	SIZE (GAL)
Steel	280

CLEANING/DISPOSAL METHOD

The tank and piping were unearthed, cut open, cleaned with a pressure washer, cut into sections, and recycled.

DISPOSAL CERTIFICATION

I certify that the above tank, piping and equipment has been properly cleaned and disposed of.

 $\frac{7}{2} \frac{\sqrt{25/1}}{\text{(Name)}} \frac{\sqrt{25/1}}{\text{(Date)}}$

Appendix C Laboratory Analytical Report - Groundwater

Volatile Organic Compounds by GC/MS

Client: AECOM - Resolution Consultants

Description: BEALB378TW02WG20151112

Laboratory ID: QK13041-004

90185

Matrix: Aqueous

Date Sampled:11/12/2015 0920

5030B

Date Received: 11/13/2015 Run Prep Method Analytical Method Dilution Analysis Date Analyst **Prep Date** Batch

	CAS	Analytical							
Parameter	Number	Method	Result	Q	LOQ	LOD	DL	Units F	Run
Benzene	71-43-2	8260B	0.45	U	5.0	0.45	0.21	ug/L	1
Ethylbenzene	100-41-4	8260B	0.95	J	5.0	0.51	0.21	ug/L	1
Naphthalene	91-20-3	8260B	4.3	BJ	5.0	0.96	0.14	ug/L	1
Toluene	108-88-3	8260B	0.48	U	5.0	0.48	0.24	ug/L	1
Xylenes (total)	1330-20-7	8260B	0.57	U	5.0	0.57	0.32	ug/L	1

11/20/2015 1613 SES

Run 1 Q % Recovery	Acceptance Limits
93	75-120
95	70-120
98	85-120
93	85-115
	Q % Recovery 93 95 98

PQL = Practical quantitation limit ND = Not detected at or above the MDL B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range P = The RPD between two GC columns exceeds 40%

H = Out of holding time

Q = Surrogate failure L = LCS/LCSD failure

J = Estimated result < PQL and ≥ MDL Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

N = Recovery is out of criteria

S = MS/MSD failure

Shealy Environmental Services, Inc.

106 Vantage Point Drive West Columbia, SC 29172 (803) 791-9700 Fax (803) 791-9111 www.shealylab.com

Semivolatile Organic Compounds by GC/MS (SIM)

Client: AECOM - Resolution Consultants

Laboratory ID: QK13041-004

Description: BEALB378TW02WG20151112

Matrix: Aqueous

0.080

0.040

ug/L

Date Sampled:11/12/2015 0920

3520C

Date Received: 11/13/2015

Run Prep Method

Dibenzo(a,h)anthracene

1

Batch **Prep Date** 11/18/2015 1236 89918

0.20

	, ,						
_	CAS	Analytical					
Parameter	Number	Method	Result Q	LOQ	LOD	DL	Units Run
Benzo(a)anthracene	56-55-3	8270D (SIM)	0.040 U	0.20	0.040	0.019	ug/L 1
Benzo(b)fluoranthene	205-99-2	8270D (SIM)	0.040 U	0.20	0.040	0.019	ug/L 1
Benzo(k)fluoranthene	207-08-9	8270D (SIM)	0.040 U	0.20	0.040	0.024	ug/L 1
Chrysene	218-01-9	8270D (SIM)	0.040 U	0.20	0.040	0.021	ug/L 1

53-70-3

Analysis Date Analyst

11/24/2015 1957 RBH

8270D (SIM)

0.080

Surrogate	Q	Run 1 % Recovery	Acceptance Limits	
2-Methylnaphthalene-d10		64	15-139	
Fluoranthene-d10		91	23-154	

Analytical Method Dilution

8270D (SIM)

PQL = Practical quantitation limit ND = Not detected at or above the MDL B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range

H = Out of holding time

Q = Surrogate failure L = LCS/LCSD failure

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

J = Estimated result < PQL and ≥ MDL

P = The RPD between two GC columns exceeds 40%

N = Recovery is out of criteria

S = MS/MSD failure

Shealy Environmental Services, Inc.

106 Vantage Point Drive West Columbia, SC 29172 (803) 791-9700 Fax (803) 791-9111 www.shealylab.com

Appendix D Regulatory Correspondence

Catherine E. Heigel, Director Promoting and protecting the health of the public and the environment

July 1, 2015

Commanding Officer Attention: NREAO Mr. William A. Drawdy United State Marine Corps Air Station Post Office Box 55001 Beaufort, SC 29904-5001

RE: IGWA

Laurel Bay Underground Storage Tank Assessment Reports for:

See attached sheet

Dear Mr. Drawdy,

The South Carolina Department of Health and Environmental Control (the Department) received the referenced Underground Storage Tank Assessment Reports for the addresses listed above. The regulatory authority for the investigation and cleanup of releases from these tank systems is the South Carolina Pollution Control Act (S.C. Code Ann. §48-1-10 et seq., as amended).

The Department has reviewed the referenced assessment reports. The submitted analytical results indicate that petroleum constituents are above established Risk-Based Screening Levels and additional investigation is warranted. Specifically, the Department requests that a groundwater sampling proposal be generated to determine if there has been an impact to groundwater at this site.

Please note that the Department's decision is based on information provided by the Marine Corps Air Station (MCAS) to date. Any information found to be contradictory to this decision may require additional action. Furthermore, the Department retains the right to request further investigation if deemed necessary.

If you have any questions, please contact me at kriegkm@dhec.sc.gov or 803-898-0255.

Sincerely,

Kent Krieg

Department of Defense Corrective Action Section

Bureau of Land and Waste Management

South Carolina Department of Health and Environmental Control

Cc: Russell Berry (via email)

Craig Ehde (via email) Bryan Beck (via email)

Catherine E. Heigel, Director

Promoting and protecting the health of the public and the environment

Krieg to Drawdy **Attachment to:**

Subject: IGWA Dated 7/1/2015

Laurel Bay Underground Storage Tank Assessment Reports for: (97 addresses/110 tanks)

118 Banyan	343 Ash Tank 2	
126 Banyan	344 Ash Tank 2	
127 Banyan	347 Ash Tank 2	
130 Banyan Tank 1	378 Aspen Tank 2	
141 Laurel Bay	379 Aspen	
151 Laurel Bay	382 Aspen Tank 1	
224 Cypress	382 Aspen Tank 2	
227 Cypress	394 Acorn Tank 2	
256 Beech Tank 2	400 Elderberry	
257 Beech Tank 2	432 Elderberry	
257 Beech Tank 1 257 Beech Tank 2	436 Elderberry	
264 Beech	473 Dogwood Tank 2	
265 Beech Tank 2	482 Laurel Bay	
265 Beech Tank 2	517 Laurel Bay	
275 Birch	586 Aster	
277 Birch Tank 1	632 Dahlia	
285 Birch	639 Dahlia Tank 2	
292 Birch Tank 3	643 Dahlia Tank 1	
297 Birch	644 Dahlia Tank 1	
301 Ash	644 Dahlia Tank 2	
306 Ash	646 Dahlia Tank 1	
310 Ash Tank 1	646 Dahlia Tank 2	
313 Ash	665 Camellia	
315 Ash Tank 2	699 Abelia	
316 Ash	744 Blue Bell	
319 Ash	745 Blue Bell Tank 1	
320 Ash	747 Blue Bell Tank 1	
321 Ash	747 Blue Bell Tank 2	
329 Ash	747 Blue Bell Tank 3	
330 Ash Tank 2	749 Blue Bell Tank 1	
331 Ash	749 Blue Bell Tank 2	
332 Ash	751 Blue Bell	
333 Ash	762 Althea	
335 Ash Tank 1	765 Althea Tank 2	
335 Ash Tank 2	766 Althea Tank 4	
341 Ash	767 Althea Tank 1	
342 Ash Tank 1	768 Althea Tank 2	
342 Ash Tank 2	768 Althea Tank 3	

Laurel Bay Underground Storage Tank Assessment Reports for: (98 addresses/110 tanks) cont.

768 Althea Tank 4	1067 Gardenia
769 Althea Tank 1	1077 Heather
769 Althea Tank 2	1081 Heather
775 Althea	1101 Iris Tank 2
819 Azalea	1104 Iris
840 Azalea	1105 Iris Tank 2
878 Cobia	1124 Iris Tank 2
891 Cobia	1142 Iris Tank 2
913 Barracuda	1146 Iris Tank 2
916 Barracuda	1218 Cardinal
923 Albacore	1240 Dove
1004 Bobwhite	1266 Dove
1022 Foxglove	1292 Eagle
1031 Foxglove	1299 Eagle Tank 1
1034 Foxglove Tank 2	1302 Eagle
1061 Gardenia Tank 3	1336 Albatross
1064 Gardenia	1351 Cardinal

Catherine E. Heigel, Director

Promoting and protecting the health of the public and the environment

Division of Waste Management Bureau of Land and Waste Management

June 8, 2016

Commanding Officer
Attention: NREAO Mr. William A. Drawdy
United State Marine Corps Air Station
Post Office Box 55001
Beaufort, SC 29904-5001

RE: Approval and Concurrence with Draft Final Initial Groundwater Investigation Report-November and December 2015

Laurel Bay Military Housing Area Multiple Properties

Dated April 2015

Dear Mr. Drawdy,

The South Carolina Department of Health and Environmental Control (the Department) received groundwater data in the above referenced Groundwater Investigation Report for the attached addresses on May 2, 2016. The regulatory authority for the investigation and cleanup of releases from these tank systems is the South Carolina Pollution Control Act (S.C. Code Ann. §48-1-10 et seq., as amended).

Per the Department's request, groundwater samples were collected from the attached referenced addresses. The Department reviewed the groundwater data and previous investigations and it agrees with the conclusions and recommendations included in the document. To further assess the impact to groundwater, permanent wells should be installed at the 15 stated addresses. For the remaining 80 addresses, there is no indication of contamination on the property and therefore no further investigation is required at this time.

Please note that the Department's decision is based on information provided by the Marine Corps Air Station (MCAS) to date. Any information found to be contradictory to this decision may require additional action. Furthermore, the Department retains the right to request further investigation if deemed necessary.

If you have any questions, please contact me at <u>petruslb@dhec.sc.gov</u> or 803-898-0294.

Sincerely,

Laurel Petrus

NETS

RCRA Federal Facilities Section

Attachment: Specific Property Recommendations

Cc: Russell Berry, EQC Region 8 (via email)

Shawn Dolan, Resolution Consultants (via email) Bryan Beck, NAVFAC MIDATLANTIC (via email)

Craig Ehde (via email)

Attachment to: Petrus to Drawdy

Subject: Draft Final Initial Groundwater Investigation Report-November and December 2015

Specific Property Recommendations

Dated June 8, 2016

Draft Final Initial Groundwater Investigation Report for (95 addresses)

Permanent Monitoring Well Investigation recommendation (15 addresses)		
130 Banyan Drive	473 Dogwood Drive	
256 Beech Street	747 Blue Bell Lane	
285 Birch Drive	749 Blue Bell Lane	
292 Birch Drive	775 Althea Street	
330 Ash Street	1034 Foxglove Street	
331 Ash Street	1104 Iris Lane	
335 Ash Street	1124 Iris Lane	
342 Ash Street		
2 2 1112		

118 Banyan Drive	644 Dahlia Drive	
126 Banyan Drive	646 Dahlia Drive	
127 Banyan Drive	665 Camellia Drive	
141 Laurel Bay Blvd	699 Abelia Street	
151 Laurel Bay Blvd	744 Blue Bell Lane	
224 Cypress Street	745 Blue Bell Lane	
227 Cypress Street	751 Blue Bell Lane	
257 Beech Street	762 Althea Street	
264 Beech Street	765 Althea Street	
265 Beech Street	766 Althea Street	
275 Birch Drive	767 Althea Street	
277 Birch Drive	768 Althea Street	
297 Birch Drive	769 Althea Street	
301 Ash Street	819 Azalea Drive	
306 Ash Street	840 Azalea Drive	
310 Ash Street	878 Cobia Drive	
313 Ash Street	891 Cobia Drive	
315 Ash Street	913 Barracuda Drive	
316 Ash Street	916 Barracuda Drive	
319 Ash Street	923 Wren Lane	
320 Ash Street	1004 Bobwhite Drive	
321 Ash Street	1022 Foxglove Street	
329 Ash Street	1031 Foxglove Street	
332 Ash Street	1061 Gardenia Drive	
333 Ash Street	1064 Gardenia Drive	
341 Ash Street	1067 Gardenia Drive	
347 Ash Street	1077 Heather Street	
378 Aspen Street	1081 Heather Street	
379 Aspen Street	1101 Iris Lane	
382 Aspen Street	1105 Iris Lane	
394 Acorn Street	1142 Iris Lane	
400 Elderberry Drive	1146 Iris Lane	
432 Elderberry Drive	1218 Cardinal Lane	,300
436 Elderberry Drive	1240 Dove Lane	
482 Laurel Bay Blvd	1266 Dove Lane	
517 Laurel Bay Blvd	1292 Eagle Lane	p.6
586 Aster Street	1299 Eagle Lane	
632 Dahlia Drive	1302 Eagle Lane	
639 Dahlia Drive	1336 Albatross Drive	
643 Dahlia Drive	1351 Cardinal Lane	

Attachment to: Petrus to Drawdy
Subject: Draft Final Initial Groundwater Investigation Report-November and December 2015
Specific Property Recommendations
Dated June 8, 2016, Page 2